Население Земли как растущая иерархическая сеть. Анатолий Васильевич Молчанов
Чтение книги онлайн.
Читать онлайн книгу Население Земли как растущая иерархическая сеть - Анатолий Васильевич Молчанов страница 70
Применим эту математику для разбиения всей истории развития человечества от неолита до наших дней. Формула гиперболы мирового демографического роста имеет вид:
Рис. 1. Гипербола демографического роста населения Земли.
Где Т0 = 2022 + 8154 = 10176 год – дата сингулярности, если время отсчитывать от начала неолита. Составим теперь последовательность времен по следующему правилу, которое назовем алгоритмом восьми шагов:
• Во-первых, все времена будем отсчитывать от момента начала неолита, и первый член этого ряда положим равным нулю;
• Второй член данного ряда – это точка на оси времени, которая делит пополам отрезок времени от начала неолита до сингулярности Дьяконова – Капицы, т. е. 10176/2 = 5088;
• Остальные члены определяются последовательностью, состоящей из семи шагов по оси времени, в которой каждый последующий шаг вдвое короче предыдущего.
Предел этой прогрессии: 10176 год (при отсчете времени от начала неолита) – сингулярность Дьяконова – Капицы. Пересчитаем в соответствии с обозначенным здесь алгоритмом границы восьми исторических периодов, взяв за начало отсчета времени нулевой год н. э.
Рис. 3. Восемь ступеней исторического развития. Отсчет времени ведется от начала новой эры.
Таким образом получаем восемь ступеней, периодов или фаз исторического развития. При этом продолжительность каждого последующего периода в два раза меньше предыдущего, численность населения мира за время его развертывания удваивается, а инвариантом процесса является постоянная Форстера.
В качестве показателя исторического изменения при периодизации по алгоритму восьми шагов выступает растущая по гиперболическому закону численность населения Земли.
Казалось бы, в полученных результатах нет ничего особенного – это всего лишь математика. Можно было бы взять любой, достаточно удаленный момент времени в прошлом и 2022 год, рассчитать таким способом восемь исторических периодов, и численность населения также будет удваиваться от периода к периоду. Но оказывается, что лишь тогда, когда алгоритм стартует с момента начала неолита, разметка исторического времени на периоды соответствует действительности.
Следовательно, существуют девять фиксированных, особенных значений переменной «численность населения Земли», при достижении которых и происходят фундаментальные исторические изменения в человеке и обществе. На вопрос: почему это так? – ответа нет. Так же как и на вопрос о том, точные ли даты исторического времени соответствуют таким значениям численности, или алгоритм задает лишь их математические ожидания.
Значения