Logic: Deductive and Inductive. Carveth Read
Чтение книги онлайн.
Читать онлайн книгу Logic: Deductive and Inductive - Carveth Read страница 15
If, then, the disjunctive A is either B or C (B and C being contraries) implies that both alternatives cannot be true, it can only be adequately rendered in hypotheticals by the two forms—(1) If A is B, it is not C, and (2)If A is not B, it is C. But if the disjunctive A is either B or C (B and C not being contraries) implies that both may be true, it will be adequately translated into a hypothetical by the single form, If A is not B, it is C. We cannot translate it into—If A is B, it is not C, for, by our supposition, if 'A is B' is true, it does not follow that 'A is C' must be false.
Logicians are also divided in opinion as to the function of the hypothetical form. Some think it expresses doubt; for the consequent depends on the antecedent, and the antecedent, introduced by 'if,' may or may not be realised, as in If the sky is clear, the night is cold: whether the sky is, or is not, clear being supposed to be uncertain. And we have seen that some hypothetical propositions seem designed to draw attention to such uncertainty, as—If there is a resisting medium in space, etc. But other Logicians lay stress upon the connection of the clauses as the important matter: the statement is, they say, that the consequent may be inferred from the antecedent. Some even declare that it is given as a necessary inference; and on this ground Sigwart rejects particular hypotheticals, such as Sometimes when A is B, C is D; for if it happens only sometimes the connexion cannot be necessary. Indeed, it cannot even be probably inferred without further grounds. But this is also true whenever the antecedent and consequent are concerned with different matter. For example, If the soul is simple, it is indestructible. How do you know that? Because Every simple substance is indestructible. Without this further ground there can be no inference. The fact is that conditional forms often cover assertions that are not true complex propositions but a sort of euthymemes (chap. xi. § 2), arguments abbreviated and rhetorically disguised. Thus: If patience is a virtue there are painful virtues—an example from Dr. Keynes. Expanding this we have—
Patience is painful;
Patience is a virtue:
∴ Some virtue is painful.
And then we see the equivocation of the inference; for though patience be painful to learn, it is not painful as a virtue to the patient man.
The hypothetical, 'If Plato was not mistaken poets are dangerous citizens,' may be considered as an argument against the laureateship, and may be expanded (informally) thus: 'All Plato's opinions deserve respect; one of them was that poets are bad citizens; therefore it behoves us to be chary of encouraging poetry.' Or take this disjunctive, 'Either Bacon wrote the works ascribed to Shakespeare, or there were two men of the highest genius in the same age and country.' This means that it is not likely there should be two such men, that we are sure of Bacon, and therefore ought to give him all the glory. Now, if it is the part of Logic 'to make explicit in language all that is implicit in thought,' or to put arguments into the form in which they can best be examined, such propositions as the above ought to be analysed in the way suggested, and confirmed or refuted according to their real intention.
We may conclude that no single function can be assigned to all hypothetical propositions: each must be treated according to its own meaning in its own context.
§ 5. As to Modality, propositions are divided into Pure and Modal. A Modal proposition is one in which the predicate is affirmed or denied, not simply but cum modo, with a qualification. And some Logicians have considered any adverb occurring in the predicate, or any sign of past or future tense, enough to constitute a modal: as 'Petroleum is dangerously inflammable'; 'English will be the universal language.' But far the most important kind of modality, and the only one we need consider, is that which is signified by some qualification of the predicate as to the degree of certainty with which it is affirmed or denied. Thus, 'The bite of the cobra is probably mortal,' is called a Contingent or Problematic Modal: 'Water is certainly composed of oxygen and hydrogen' is an Assertory or Certain Modal: 'Two straight lines cannot enclose a space' is a Necessary or Apodeictic Modal (the opposite being inconceivable). Propositions not thus qualified are called Pure.
Modal propositions have had a long and eventful history, but they have not been found tractable by the resources of ordinary Logic, and are now generally neglected by the authors of text-books. No doubt such propositions are the commonest in ordinary discourse, and in some rough way we combine them and draw inferences from them. It is understood that a combination of assertory or of apodeictic premises may warrant an assertory or an apodeictic conclusion; but that if we combine either of these with a problematic premise our conclusion becomes problematic; whilst the combination of two problematic premises gives a conclusion less certain than either. But if we ask 'How much less certain?' there is no answer. That the modality of a conclusion follows the less certain of the premises combined, is inadequate for scientific guidance; so that, as Deductive Logic can get no farther than this, it has abandoned the discussion of Modals. To endeavour to determine the degree of certainty attaching to a problematic judgment is not, however, beyond the reach of Induction, by analysing circumstantial evidence, or by collecting statistics with regard to it. Thus, instead of 'The cobra's bite is probably fatal,' we might find that it is fatal 80 times in 100. Then, if we know that of those who go to India 3 in 1000 are bitten, we can calculate what the chances are that any one going to India will die of a cobra's bite (chap. xx.).
§ 6. Verbal and Real Propositions.—Another important division of propositions turns upon the relation of the predicate to the subject in respect of their connotations. We saw, when discussing Relative Terms, that the connotation of one term often implies that of another; sometimes reciprocally, like 'master' and 'slave'; or by inclusion, like species and genus; or by exclusion, like contraries and contradictories. When terms so related appear as subject and predicate of the same proposition, the result is often tautology—e.g., The master has authority over his slave; A horse is an animal; Red is not blue; British is not foreign. Whoever knows the meaning of 'master,' 'horse,' 'red,' 'British,' learns nothing from these propositions. Hence they are called Verbal propositions, as only expounding the sense of words, or as if they were propositions only by satisfying the forms of language, not by fulfilling the function of propositions in conveying a knowledge of facts. They are also called 'Analytic' and 'Explicative,' when they separate and disengage the elements of the connotation of the subject. Doubtless, such propositions may be useful to one who does not know the language; and Definitions, which are verbal propositions whose predicates analyse the whole connotations of their subjects, are indispensable instruments of science (see chap. xxii.).
Of course, hypothetical propositions may also be verbal, as If the soul be material it is extended; for 'extension' is connoted by 'matter'; and, therefore, the corresponding disjunctive is verbal—Either the soul is not material, or it is extended. But a true divisional disjunctive can never be verbal (chap. xxi. § 4, rule 1).
On the other hand, when there is no such direct relation between subject and predicate that their connotations imply one another, but the predicate connotes something that cannot be learnt from the connotation of the subject, there is no longer tautology, but an enlargement of meaning—e.g., Masters are degraded by their slaves; The horse is the noblest animal; Red is the favourite colour of the British army; If the soul is simple, it is indestructible. Such propositions are called Real, Synthetic, or Ampliative, because they are propositions for which a mere understanding of their subjects would be no substitute, since the predicate adds a meaning of