Logic: Deductive and Inductive. Carveth Read
Чтение книги онлайн.
Читать онлайн книгу Logic: Deductive and Inductive - Carveth Read страница 20
Again, having obtained the obverse of a given proposition, it may be desirable to recover the obvertend; or it may at any time be requisite to change a given infinite proposition into the corresponding direct affirmative or negative; and in such cases the process is still obversion. Thus, if No S is not-P be given us to recover the obvertend or to find the corresponding affirmative; the proposition being formally negative, we apply the rule for obverting negatives: 'Remove the negative sign, and for the predicate substitute its contradictory.' This yields the affirmative All S is P. Similarly, to obtain the obvertend of All S is not-P, apply the rule for obverting Affirmatives; and this yields No S is P.
§ 6. Contrariety.—We have seen in chap. iv. § 8, that contrary terms are such that no two of them are predicable in the same way of the same subject, whilst perhaps neither may be predicable of it. Similarly, Contrary Propositions may be defined as those of which no two are ever both true together, whilst perhaps neither may be true; or, in other words, both may be false. This is the relation between A. and E. when concerned with the same matter: as A.—All men are wise; E.—No men are wise. Such propositions cannot both be true; but they may both be false, for some men may be wise and some not. They cannot both be true; for, by the principle of Contradiction, if wise may be affirmed of All men, not-wise must be denied; but All men are not-wise is the obverse of No men are wise, which therefore may also be denied.
At the same time we cannot apply to A. and E. the principle of Excluded Middle, so as to show that one of them must be true of the same matter. For if we deny that All men are wise, we do not necessarily deny the attribute 'wise' of each and every man: to say that Not all are wise may mean no more than that Some are not. This gives a proposition in the form of O.; which, as we have seen, does not imply its subalternans, E.
If, however, two Singular Propositions, having the same matter, but differing in quality, are to be treated as universals, and therefore as A. and E., they are, nevertheless, contradictory and not merely contrary; for one of them must be false and the other true.
§ 7. Contradiction is a relation between two propositions analogous to that between contradictory terms (one of which being affirmed of a subject the other is denied)—such, namely, that one of them is false and the other true. This is the case with the forms A. and O., and E. and I., in the same matter. If it be true that All men are wise, it is false that Some men are not wise (equivalent by obversion to Some men are not-wise); or else, since the 'Some men' are included in the 'All men,' we should be predicating of the same men that they are both 'wise' and 'not-wise'; which would violate the principle of Contradiction. Similarly, No men are wise, being by obversion equivalent to All men are not-wise, is incompatible with Some men are wise, by the same principle of Contradiction.
But, again, if it be false that All men are wise, it is always true that Some are not wise; for though in denying that 'wise' is a predicate of 'All men' we do not deny it of each and every man, yet we deny it of 'Some men.' Of 'Some men,' therefore, by the principle of Excluded Middle, 'not-wise' is to be affirmed; and Some men are not-wise, is by obversion equivalent to Some men are not wise. Similarly, if it be false that No men are wise, which by obversion is equivalent to All men are not-wise, then it is true at least that Some men are wise.
By extending and enforcing the doctrine of relative terms, certain other inferences are implied in the contrary and contradictory relations of propositions. We have seen in chap. iv. that the contradictory of a given term includes all its contraries: 'not-blue,' for example, includes red and yellow. Hence, since The sky is blue becomes by obversion, The sky is not not-blue, we may also infer The sky is not red, etc. From the truth, then, of any proposition predicating a given term, we may infer the falsity of all propositions predicating the contrary terms in the same relation. But, on the other hand, from the falsity of a proposition predicating a given term, we cannot infer the truth of the predication of any particular contrary term. If it be false that The sky is red, we cannot formally infer, that The sky is blue (cf. chap. iv. § 8).
§ 8. Sub-contrariety is the relation of two propositions, concerning the same matter that may both be true but are never both false. This is the case with I. and O. If it be true that Some men are wise, it may also be true that Some (other) men are not wise. This follows from the maxim in chap. vi. § 6, not to go beyond the evidence.
For if it be true that Some men are wise, it may indeed be true that All are (this being the subalternans): and if All are, it is (by contradiction) false that Some are not; but as we are only told that Some men are, it is illicit to infer the falsity of Some are not, which could only be justified by evidence concerning All men.
But if it be false that Some men are wise, it is true that Some men are not wise; for, by contradiction, if Some men are wise is false, No men are wise is true; and, therefore, by subalternation, Some men are not wise is true.
§ 9. The Square of Opposition.—By their relations of Subalternation, Contrariety, Contradiction, and Sub-contrariety, the forms A. I. E. O. (having the same matter) are said to stand in Opposition: and Logicians represent these relations by a square having A. I. E. O. at its corners:
As an aid to the memory, this diagram is useful; but as an attempt to represent the logical relations of propositions, it is misleading. For, standing at corners of the same square, A. and E., A. and I., E. and O., and I. and O., seem to be couples bearing the same relation to one another; whereas we have seen that their relations are entirely different. The following traditional summary of their relations in respect of truth and falsity is much more to the purpose:
Where, however, as in cases 2, 3, 6, 7, alleging either the falsity of universals or the truth of particulars, it follows that two of the three Opposites are unknown, we may conclude further that one of them must be true and the other false, because the two unknown are always Contradictories.
§ 10. Secondary modes of Immediate Inference are obtained by applying the process of Conversion or Obversion to the results already obtained by the other process. The best known secondary form of Immediate Inference is the Contrapositive, and this is the converse of the obverse of a given proposition. Thus:
There is no contrapositive of I., because the obverse of I. is in the form of O., and we have seen that O. cannot be converted. O., however, has a contrapositive (Some not-P is S); and this is sometimes given instead of the converse, and called the 'converse by negation.'
Contraposition needs no justification by the Laws of Thought, as it is nothing but a compounding of conversion with obversion, both of which processes have already been justified. I give a table opposite of the other ways of compounding these primary modes of Immediate Inference.
In this table a and b stand for not-A and not-B and had better be read thus: for No A is b, No A is not-B; for All b is a (col. 6), All not-B is not-A; and so on.
It may not, at first, be obvious why the process of alternately obverting and converting any proposition should ever come to an end; though it will, no doubt, be considered a very fortunate circumstance that it always does end. On examining the results, it will be found that the cause of its ending is the inconvertibility of O. For E., when obverted, becomes A.; every A, when converted, degenerates into I.; every I., when obverted, becomes O.; O cannot be