Нереальная реальность. Путешествие по квантовой петле. Карло Ровелли
Чтение книги онлайн.
Читать онлайн книгу Нереальная реальность. Путешествие по квантовой петле - Карло Ровелли страница 7
Как же глубоко заблуждается здесь великий Платон!
Существует ли предел делимости?
Величайший физик второй половины XX века Ричард Фейнман писал в начале своего великолепного вводного курса лекций по физике:
Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это – атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов – маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе, как вы убедитесь, содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения[15].
Не располагая знаниями современной физики, Демокрит тем не менее пришел к мысли, что всё состоит из неделимых частиц. Как ему это удалось?
Он использовал аргументы, основанные на наблюдении; например, он совершенно верно предполагал, что износ колеса и высыхание белья на веревке могут происходить из-за медленного улетучивания частиц соответственно дерева и воды. Кроме того, у него были аргументы философского плана. Сконцентрируемся на них, поскольку их сила простирается вплоть до квантовой гравитации.
Демокрит заметил, что вещество не может быть непрерывным целым, поскольку такое допущение приводит к противоречию. Мы знаем о рассуждениях Демокрита, поскольку их описывает Аристотель[16]. Представим, говорит Демокрит, что вещество бесконечно делимо, то есть его можно разделять на части до бесконечности. Что останется в результате?
Могут ли это быть крошечные частицы, имеющие протяженность? Нет, поскольку в этом случае такие частицы материи не были бы делимыми до бесконечности. Поэтому остаются только точки без протяженности. Но теперь попробуем составить кусок материи из таких точек: сложив вместе две точки без протяженности, вы не получите протяженную вещь, так же как и из трех точек и даже из четырех. На самом деле, сколько бы точек вы ни сложили вместе, вы никогда не получите протяженности, поскольку у точек ее нет. Поэтому материю нельзя представлять состоящей из точек, лишенных протяженности, потому что независимо от того, сколько точек мы объединим, мы никогда не сможем получить нечто, имеющее пространственную протяженность. Единственная возможность, заключает Демокрит, состоит в том, что любая часть
14
15
16