Нереальная реальность. Путешествие по квантовой петле. Карло Ровелли

Чтение книги онлайн.

Читать онлайн книгу Нереальная реальность. Путешествие по квантовой петле - Карло Ровелли страница 8

Нереальная реальность. Путешествие по квантовой петле - Карло Ровелли New Science

Скачать книгу

таким образом, потребуется бесконечное число подобных шагов, чтобы догнать черепаху, а бесконечное число шагов, рассуждает Зенон, это бесконечное количество времени. Следовательно, согласно строгой логике, Ахиллесу потребуется бесконечное количество времени, чтобы догнать черепаху; иначе говоря, он никогда ее не догонит. Но поскольку мы видим, что проворный Ахиллес догоняет и обгоняет столько черепах, сколько захочет, мы приходим к заключению, что видимое нами иррационально и потому иллюзорно.

      Честно говоря, всё это звучит не слишком убедительно. Но где же допущена ошибка? Один из возможных ответов состоит в том, что Зенон ошибался, полагая, что сложение бесконечного числа вещей приводит к бесконечной вещи. Представьте, что вы взяли кусок струны, разрезали его пополам, затем еще раз пополам и так до бесконечности. В конце вы получите бесконечное число крошечных кусочков струны; их сумма, однако, будет конечной, поскольку из них можно сложить лишь кусок струны исходного размера. Получается, что из бесконечного числа струн может получиться конечная струна; бесконечное число всё более коротких отрезков времени может складываться в конечное время, и герою, хотя и придется преодолеть бесконечное число постоянно уменьшающихся дистанций, удастся сделать это за конечное время и в итоге догнать черепаху.

      Кажется, парадокс разрешен. Решение состоит в идее континуума: могут существовать сколь угодно малые отрезки времени, а их бесконечное число может складываться в конечный отрезок времени. Аристотель первым интуитивно понял эту возможность, которая в дальнейшем исследовалась древними и современными математиками[18]

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

      1

      Цит. по: Фрагменты ранних греческих философов. Ч. I. – М.: Наука, 1989. – С. 136. – Примеч. пер.

      2

      Панионий – святилище Посейдона, расположенное на мысе Микале между городами Милетом и Эфесом. – Примеч. пер.

      3

      Об Анаксимандре и милетцах см.: Carlo Rovelli. The First Scientist: Anaximander and His Legacy. – Yardley, Westholme, 2007. – Здесь и далее примеч. автора, если не указано иное.

      4

      О милетском происхождении Левкиппа сообщает, например, Симплиций (см.: M. Andolfo. Atomisti antichi. Frammenti e testimonianze (Древний атомизм. Фрагменты и свидетельства). – Milan, Rusconi, 1999. – P. 103.) Однако в этом нет уверенности. Связь с Милетом и Элеей важна в плане его культурных корней; чем Левкипп

Скачать книгу


<p>18</p>

Математики говорят о сходящихся бесконечных суммах, или рядах. Например, бесконечная сумма 1/2 + 1/4 + 1/8 + 1/16 +… сходится к 1. Во времена Зенона не было представления о бесконечных сходящихся рядах. Их открыл Архимед несколькими столетиями позже и использовал для вычисления площадей. Ими активно пользовался Ньютон, но полной ясности с этими математическими объектами не было вплоть до работ Больцано и Вейерштрасса, выполненных в XIX столетии. Аристотель, однако, уже понимал, что это возможный способ ответа Зенону; введенное Аристотелем различие между актуальной бесконечностью и потенциальной бесконечностью уже содержит в себе ключевую идею: различие между отсутствием предела делимости и возможностью иметь нечто уже разделенным на бесконечное число частей.