Krótka historia czasu. Стивен Хокинг

Чтение книги онлайн.

Читать онлайн книгу Krótka historia czasu - Стивен Хокинг страница 8

Krótka historia czasu - Стивен Хокинг

Скачать книгу

jest zaznaczony poziomo. Pozostałe dwa wymiary będą ignorowane lub ukazywane za pomocą perspektywy. (Mam na myśli diagramy czasoprzestrzenne, takie jak rysunek 2). Na przykład rysunek 3 przedstawia czas mierzony w latach wzdłuż osi pionowej w górę, oraz odległość między Słońcem a gwiazdą Alfa Centauri, mierzoną wzdłuż osi poziomej w kilometrach. Trajektorie Słońca i Alfa Centauri w czasoprzestrzeni przedstawiają pionowe linie po prawej i lewej stronie. Promień światła porusza się po przekątnej; jego podróż od Słońca do Alfa Centauri trwa cztery lata.

      Rysunek 3

      Jak widzieliśmy, z równań Maxwella wynika, że prędkość światła nie zależy od prędkości, z jaką porusza się jego źródło. Ten wniosek został potwierdzony przez bardzo dokładne pomiary. Stąd z kolei wynika, że sygnał świetlny, wyemitowany w pewnej chwili z punktu w przestrzeni, rozchodzi się jak kula światła, której rozmiar i położenie nie zależą od prędkości źródła. Po upływie jednej milionowej części sekundy światło rozprzestrzeni się, przyjmując formę kuli o promieniu 300 metrów, po dwóch milionowych sekundy promień kuli będzie równy 600 metrom i tak dalej. Przypomina to rozchodzenie się małych fal na powierzchni stawu, gdy wrzucimy doń kamień. Zmarszczki rozchodzą się jako koła powiększające się w miarę upływu czasu. Spróbujmy wyobrazić sobie model trójwymiarowy, składający się z dwuwymiarowej powierzchni stawu i jednego wymiaru czasu. Rozchodzące się koła zmarszczek utworzą stożek, którego wierzchołek wyznaczony jest przez miejsce i moment uderzenia kamienia w powierzchnię wody (rys. 4). Podobnie, światło rozchodzące się z pewnego zdarzenia, tworzy trójwymiarowy stożek w czterowymiarowej czasoprzestrzeni. Stożek ten nazywamy stożkiem świetlnym przyszłości. W ten sam sposób można narysować drugi stożek, utworzony ze wszystkich zdarzeń, z których wysłane światło mogło dotrzeć do danego zdarzenia. Ten stożek nazywamy stożkiem świetlnym przeszłości (rys. 5).

      Rysunek 4

      Rysunek 5

      Rysunek 6

      Rysunek 7

      Stożki świetlne przeszłości i przyszłości zdarzenia P dzielą czasoprzestrzeń na trzy regiony (rys. 6). Absolutna przyszłość zdarzenia P znajduje się we wnętrzu stożka świetlnego przyszłości. Jest to zbiór wszystkich zdarzeń, na które może oddziałać to, co dzieje się w P. Żaden sygnał z P nie może dotrzeć do zdarzeń poza stożkiem świetlnym P, ponieważ nic nie porusza się szybciej niż światło. Dlatego to, co zdarzyło się w P, nie może wpłynąć na takie zdarzenia. Absolutna przeszłość zdarzenia P to region wewnątrz stożka świetlnego przeszłości P. Jest to zbiór tych wszystkich zdarzeń, z których wysłany sygnał mógł dotrzeć do P. Wobec tego absolutna przeszłość P to zbiór wszystkich zdarzeń mogących mieć wpływ na to, co zdarzyło się w P. Jeśli wiadomo, co dzieje się w określonej chwili we wszystkich punktach obszaru przestrzeni położonego wewnątrz stożka przeszłości P, to można przewidzieć, co zdarzy się w P. „Gdzie indziej” jest częścią czasoprzestrzeni leżącą poza obu stożkami świetlnymi zdarzenia P. Zdarzenia w „gdzie indziej” nie mogły wpłynąć na P ani zdarzenie P nie może wpłynąć na nie. Na przykład, gdyby Słońce przestało świecić dokładnie w tej chwili, nie miałoby to wpływu na obecne zdarzenia na Ziemi, ponieważ Ziemia byłaby w „gdzie indziej” tego wydarzenia (rys. 7). Dowiedzielibyśmy się o tym dopiero po ośmiu minutach, bo tak długo trwa podróż światła ze Słońca do Ziemi. Dopiero wtedy Ziemia znalazłaby się w stożku świetlnym zdarzenia, jakim było zgaśnięcie Słońca. Podobnie, nie wiemy, co dzieje się obecnie w odległych regionach wszechświata: światło docierające do nas z odległych galaktyk zostało wyemitowane miliony lat temu, a gdy patrzymy na najdalsze obiekty, jakie udało nam się zaobserwować, widzimy światło wysłane przed ośmioma miliardami lat. Kiedy więc patrzymy na wszechświat, widzimy go, jakim był w przeszłości.

      Jeśli nie uwzględnimy siły ciążenia, jak Einstein i Poincaré w 1905 roku, to otrzymamy teorię nazywaną szczególną teorią względności. W każdym zdarzeniu (punkcie czasoprzestrzeni) możemy skonstruować stożki świetlne (stożek świetlny to zbiór wszystkich trajektorii promieni świetlnych wysłanych z tego zdarzenia), a ponieważ prędkość światła jest jednakowa we wszystkich zdarzeniach i we wszystkich kierunkach, wszystkie stożki będą identyczne i będą wskazywały ten sam kierunek w czasoprzestrzeni. Wiemy, że nic nie może poruszać się prędzej niż światło; to oznacza, że droga dowolnego ciała w czasoprzestrzeni musi leżeć wewnątrz stożka świetlnego dowolnego zdarzenia leżącego na tej drodze (rys. 8).

      Rysunek 8

      Szczególna teoria względności z powodzeniem wyjaśnia fakt, że prędkość światła jest taka sama dla różnych obserwatorów (zgodnie z rezultatami doświadczenia Michelsona i Morleya) i poprawnie opisuje zjawiska, jakie zachodzą, kiedy ciała poruszają się z prędkością bliską prędkości światła. Jest ona jednak sprzeczna z teorią Newtona, która powiada, że ciała przyciągają się wzajemnie z siłą, która zależy od odległości między nimi. Wynika stąd, że wraz ze zmianą położenia jednego ciała zmienia się natychmiast siła działająca na drugie. Innymi słowy, efekty grawitacyjne powinny podróżować z nieskończoną prędkością, a nie z prędkością mniejszą lub równą prędkości światła, jak wymaga szczególna teoria względności. W latach 1908–1914 Einstein wielokrotnie, bez powodzenia, próbował znaleźć teorię ciążenia zgodną ze szczególną teorią względności. Ostatecznie w 1915 roku zaproponował nową teorię, zwaną dziś ogólną teorią względności.

      Rewolucyjność pomysłu Einsteina polega na potraktowaniu grawitacji odmiennie niż innych sił, a mianowicie jako konsekwencji krzywizny czasoprzestrzeni. Czasoprzestrzeń nie jest płaska, jak zakładano uprzednio, lecz zakrzywiona lub „pofałdowana” przez rozłożoną w niej energię i masę. Ciała takie jak Ziemia nie są zmuszone do poruszania się po zakrzywionej orbicie przez siłę ciążenia; należy raczej powiedzieć, że poruszają się w zakrzywionej przestrzeni po linii najbliższej linii prostej, zwanej linią geodezyjną. Linia geodezyjna to najkrótsza (lub najdłuższa) droga łącząca dwa sąsiednie punkty. Na przykład, powierzchnia Ziemi tworzy dwuwymiarową przestrzeń zakrzywioną. Linią geodezyjną na Ziemi jest tzw. wielkie koło, które stanowi najkrótszą drogę między dwoma punktami (rys. 9). Ponieważ linia geodezyjna jest najkrótszą linią między dowolnymi dwoma lotniskami, drogę tę nawigatorzy wskazują pilotom samolotów. Według ogólnej teorii względności ciała zawsze poruszają się po liniach prostych w czterowymiarowej przestrzeni, nam jednak wydaje się, że ich droga w przestrzeni jest krzywa. (Przypomina to obserwację samolotu przelatującego nad górzystym terenem. Choć leci on po prostej w trójwymiarowej przestrzeni, jego cień porusza się po krzywej na dwuwymiarowej przestrzeni Ziemi).

      Rysunek 9

      Masa Słońca zakrzywia czasoprzestrzeń w taki sposób, że choć Ziemia porusza się po linii prostej w czterowymiarowej czasoprzestrzeni, nam się wydaje, że wędruje ona po orbicie eliptycznej w przestrzeni trójwymiarowej. W rzeczywistości orbity planet przewidywane na podstawie ogólnej teorii względności są niemal takie same jak te, które wynikają

Скачать книгу