Идеи с границы познания. Эйнштейн, Гёдель и философия науки. Джим Холт

Чтение книги онлайн.

Читать онлайн книгу Идеи с границы познания. Эйнштейн, Гёдель и философия науки - Джим Холт страница 13

Идеи с границы познания. Эйнштейн, Гёдель и философия науки - Джим Холт Удивительная Вселенная

Скачать книгу

была «новая математика», которую теперь принято считать педагогическим фиаско (во Франции ее называют les maths modernes и презирают не меньше). Новая математика была основана на теориях авторитетного швейцарского психолога Жана Пиаже, который считал, что дети рождаются безо всякого численного чувства и лишь постепенно овладевают понятием числа на нескольких этапах развития. Пиаже считал, что до четырех-пяти лет дети не в состоянии усвоить простой принцип, что от перемещения предметов их количество не меняется, а значит, нет никакого смысла учить их арифметике до шести-семи лет.

      Представления Пиаже стали стандартом к началу пятидесятых, однако с тех пор психологи убедились, что он недооценивал арифметические способности маленьких детей. Если полугодовалому младенцу одновременно показывать изображения привычных предметов и давать послушать определенные ритмы на барабане, он дольше смотрит на картинки, где количество предметов соответствует количеству ударов. Сейчас общепринято, что человек от рождения обладает рудиментарной способностью воспринимать и выражать количество (как и многие животные, в том числе саламандры, голуби, еноты, дельфины, попугаи и обезьяны). И если эволюция снабдила нас одним способом выражать число – примитивным числовым чутьем, то культура подарила еще два: цифры и числительные. Деан полагает, что эти три способа думать о числе соответствуют определенным участкам мозга. Числовое чутье обитает в теменной доле – части мозга, отвечающей за положение в пространстве, с цифрами работают зрительные зоны, а числительные обрабатываются в зонах восприятия языка.

      Увы, во всей этой сложной мозговой механике так и не нашлось эквивалента микросхемы из пятидолларового калькулятора. Из-за этого дефекта изучение страшной четверки – «Скольжения, Причитания, Умиления и Изнеможения», как пошутил Льюис Кэрролл (пер. Н. Демуровой) – превращается в сущее наказание. Поначалу еще ничего. Числовое чутье позволяет примерно понимать, что такое сложение, поэтому еще до школы дети находят простые способы складывать числа. Например, если попросить ребенка сосчитать, сколько будет 2+4, он начнет с первого слагаемого, а потом досчитает до второго: «Два, два и один – три, два и два – четыре, два и три – пять, два и четыре – шесть, шесть!» Но с умножением все иначе. Умножение – занятие противоестественное, как часто приговаривает Деан, а все потому, что наш мозг для такого не оборудован. Тут не помогут ни чутье, ни прибавление по одному, поэтому таблицу умножения приходится хранить в мозге в вербальном виде, как последовательность слов. Список таких арифметических фактов не так уж длинен, но страшно коварен: одни и те же числа повторяются по много раз в разном порядке, а фразы частично перекрываются, и в них возникают ненужные обманчивые рифмы (доказано, что билингвы, когда умножают, переходят на язык, на котором учились в школе). Человеческая память, в отличие от компьютерной, в ходе эволюции приучилась строить ассоциации, вот почему она так плохо подходит для арифметики,

Скачать книгу