The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method. Henri Poincare
Чтение книги онлайн.
Читать онлайн книгу The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method - Henri Poincare страница 10
Another frame which we impose on the world is space. Whence come the first principles of geometry? Are they imposed on us by logic? Lobachevski has proved not, by creating non-Euclidean geometry. Is space revealed to us by our senses? Still no, for the space our senses could show us differs absolutely from that of the geometer. Is experience the source of geometry? A deeper discussion will show us it is not. We therefore conclude that the first principles of geometry are only conventions; but these conventions are not arbitrary and if transported into another world (that I call the non-Euclidean world and seek to imagine), then we should have been led to adopt others.
In mechanics we should be led to analogous conclusions, and should see that the principles of this science, though more directly based on experiment, still partake of the conventional character of the geometric postulates. Thus far nominalism triumphs; but now we arrive at the physical sciences, properly so called. Here the scene changes; we meet another sort of hypotheses and we see their fertility. Without doubt, at first blush, the theories seem to us fragile, and the history of science proves to us how ephemeral they are; yet they do not entirely perish, and of each of them something remains. It is this something we must seek to disentangle, since there and there alone is the veritable reality.
The method of the physical sciences rests on the induction which makes us expect the repetition of a phenomenon when the circumstances under which it first happened are reproduced. If all these circumstances could be reproduced at once, this principle could be applied without fear; but that will never happen; some of these circumstances will always be lacking. Are we absolutely sure they are unimportant? Evidently not. That may be probable, it can not be rigorously certain. Hence the important rôle the notion of probability plays in the physical sciences. The calculus of probabilities is therefore not merely a recreation or a guide to players of baccarat, and we must seek to go deeper with its foundations. Under this head I have been able to give only very incomplete results, so strongly does this vague instinct which lets us discern probability defy analysis.
After a study of the conditions under which the physicist works, I have thought proper to show him at work. For that I have taken instances from the history of optics and of electricity. We shall see whence have sprung the ideas of Fresnel, of Maxwell, and what unconscious hypotheses were made by Ampère and the other founders of electrodynamics.
PART I
NUMBER AND MAGNITUDE
CHAPTER I
On the Nature of Mathematical Reasoning
I
The very possibility of the science of mathematics seems an insoluble contradiction. If this science is deductive only in appearance, whence does it derive that perfect rigor no one dreams of doubting? If, on the contrary, all the propositions it enunciates can be deduced one from another by the rules of formal logic, why is not mathematics reduced to an immense tautology? The syllogism can teach us nothing essentially new, and, if everything is to spring from the principle of identity, everything should be capable of being reduced to it. Shall we then admit that the enunciations of all those theorems which fill so many volumes are nothing but devious ways of saying A is A?
Without doubt, we can go back to the axioms, which are at the source of all these reasonings. If we decide that these can not be reduced to the principle of contradiction, if still less we see in them experimental facts which could not partake of mathematical necessity, we have yet the resource of classing them among synthetic a priori judgments. This is not to solve the difficulty, but only to baptize it; and even if the nature of synthetic judgments were for us no mystery, the contradiction would not have disappeared, it would only have moved back; syllogistic reasoning remains incapable of adding anything to the data given it: these data reduce themselves to a few axioms, and we should find nothing else in the conclusions.
No theorem could be new if no new axiom intervened in its demonstration; reasoning could give us only the immediately evident verities borrowed from direct intuition; it would be only an intermediary parasite, and therefore should we not have good reason to ask whether the whole syllogistic apparatus did not serve solely to disguise our borrowing?
The contradiction will strike us the more if we open any book on mathematics; on every page the author will announce his intention of generalizing some proposition already known. Does the mathematical method proceed from the particular to the general, and, if so, how then can it be called deductive?
If finally the science of number were purely analytic, or could be analytically derived from a small number of synthetic judgments, it seems that a mind sufficiently powerful could at a glance perceive all its truths; nay more, we might even hope that some day one would invent to express them a language sufficiently simple to have them appear self-evident to an ordinary intelligence.
If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from the syllogism.
The difference must even be profound. We shall not, for example, find the key to the mystery in the frequent use of that rule according to which one and the same uniform operation applied to two equal numbers will give identical results.
All these modes of reasoning, whether or not they be reducible to the syllogism properly so called, retain the analytic character, and just because of that are powerless.
II
The discussion is old; Leibnitz tried to prove 2 and 2 make 4; let us look a moment at his demonstration.
I will suppose the number 1 defined and also the operation x + 1 which consists in adding unity to a given number x.
These definitions, whatever they be, do not enter into the course of the reasoning.
I define then the numbers 2, 3 and 4 by the equalities
(1) 1 + 1 = 2; (2) 2 + 1 = 3; (3) 3 + 1 = 4.
In the same way, I define the operation x + 2 by the relation:
(4) x + 2 = (x + 1) + 1.
That presupposed, we have
2 + 1 + 1 = 3 + 1 | (Definition 2), |
3 + 1 = 4
|