The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method. Henri Poincare

Чтение книги онлайн.

Читать онлайн книгу The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method - Henri Poincare страница 35

The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method - Henri  Poincare

Скачать книгу

does this principle occupy thus a sort of privileged place among all the physical laws? There are many little reasons for it.

      First of all it is believed that we could not reject it or even doubt its absolute rigor without admitting the possibility of perpetual motion; of course we are on our guard at such a prospect, and we think ourselves less rash in affirming Mayer's principle than in denying it.

      That is perhaps not wholly accurate; the impossibility of perpetual motion implies the conservation of energy only for reversible phenomena.

      The imposing simplicity of Mayer's principle likewise contributes to strengthen our faith. In a law deduced immediately from experiment, like Mariotte's, this simplicity would rather seem to us a reason for distrust; but here this is no longer the case; we see elements, at first sight disparate, arrange themselves in an unexpected order and form a harmonious whole; and we refuse to believe that an unforeseen harmony may be a simple effect of chance. It seems that our conquest is the dearer to us the more effort it has cost us, or that we are the surer of having wrested her true secret from nature the more jealously she has hidden it from us.

      But those are only little reasons; to establish Mayer's law as an absolute principle, a more profound discussion is necessary. But if this be attempted, it is seen that this absolute principle is not even easy to state.

      In each particular case it is clearly seen what energy is and at least a provisional definition of it can be given; but it is impossible to find a general definition for it.

      If we try to enunciate the principle in all its generality and apply it to the universe, we see it vanish, so to speak, and nothing is left but this: There is something which remains constant.

      But has even this any meaning? In the determinist hypothesis, the state of the universe is determined by an extremely great number n of parameters which I shall call x1, x2, … xn. As soon as the values of these n parameters at any instant are known, their derivatives with respect to the time are likewise known and consequently the values of these same parameters at a preceding or subsequent instant can be calculated. In other words, these n parameters satisfy n differential equations of the first order.

      These equations admit of n − 1 integrals and consequently there are n − 1 functions of x1, x2, … xn, which remain constant. If then we say there is something which remains constant, we only utter a tautology. We should even be puzzled to say which among all our integrals should retain the name of energy.

      Besides, Mayer's principle is not understood in this sense when it is applied to a limited system. It is then assumed that p of our parameters vary independently, so that we only have np relations, generally linear, between our n parameters and their derivatives.

      To simplify the enunciation, suppose that the sum of the work of the external forces is null, as well as that of the quantities of heat given off to the outside. Then the signification of our principle will be:

      There is a combination of these n − p relations whose first member is an exact differential; and then this differential vanishing in virtue of our n − p relations, its integral is a constant and this integral is called energy.

      But how can it be possible that there are several parameters whose variations are independent? That can only happen under the influence of external forces (although we have supposed, for simplicity, that the algebraic sum of the effects of these forces is null). In fact, if the system were completely isolated from all external action, the values of our n parameters at a given instant would suffice to determine the state of the system at any subsequent instant, provided always we retain the determinist hypothesis; we come back therefore to the same difficulty as above.

      If the future state of the system is not entirely determined by its present state, this is because it depends besides upon the state of bodies external to the system. But then is it probable that there exist between the parameters xi, which define the state of the system, equations independent of this state of the external bodies? and if in certain cases we believe we can find such, is this not solely in consequence of our ignorance and because the influence of these bodies is too slight for our experimenting to detect it?

      If the system is not regarded as completely isolated, it is probable that the rigorously exact expression of its internal energy will depend on the state of the external bodies. Again, I have above supposed the sum of the external work was null, and if we try to free ourselves from this rather artificial restriction, the enunciation becomes still more difficult.

      To formulate Mayer's principle in an absolute sense, it is therefore necessary to extend it to the whole universe, and then we find ourselves face to face with the very difficulty we sought to avoid.

      In conclusion, using ordinary language, the law of the conservation of energy can have only one signification, which is that there is a property common to all the possibilities; but on the determinist hypothesis there is only a single possibility, and then the law has no longer any meaning.

      On the indeterminist hypothesis, on the contrary, it would have a meaning, even if it were taken in an absolute sense; it would appear as a limitation imposed upon freedom.

      But this word reminds me that I am digressing and am on the point of leaving the domain of mathematics and physics. I check myself therefore and will stress of all this discussion only one impression, that Mayer's law is a form flexible enough for us to put into it almost whatever we wish. By that I do not mean it corresponds to no objective reality, nor that it reduces itself to a mere tautology, since, in each particular case, and provided one does not try to push to the absolute, it has a perfectly clear meaning.

      This flexibility is a reason for believing in its permanence, and as, on the other hand, it will disappear only to lose itself in a higher harmony, we may work with confidence, supporting ourselves upon it, certain beforehand that our labor will not be lost.

      Almost everything I have just said applies to the principle of Clausius. What distinguishes it is that it is expressed by an inequality. Perhaps it will be said it is the same with all physical laws, since their precision is always limited by errors of observation. But they at least claim to be first approximations, and it is hoped to replace them little by little by laws more and more precise. If, on the other hand, the principle of Clausius reduces to an inequality, this is not caused by the imperfection of our means of observation, but by the very nature of the question.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным

Скачать книгу