The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method. Henri Poincare
Чтение книги онлайн.
Читать онлайн книгу The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method - Henri Poincare страница 4
To be sure, each people will preserve its characteristic genius, and it would be a pity if it were otherwise, supposing such a thing possible. If the Anglo-Saxons wished to become Latins, they would never be more than bad Latins; just as the French, in seeking to imitate them, could turn out only pretty poor Anglo-Saxons.
And then the English and Americans have made scientific conquests they alone could have made; they will make still more of which others would be incapable. It would therefore be deplorable if there were no longer Anglo-Saxons.
But continentals have on their part done things an Englishman could not have done, so that there is no need either for wishing all the world Anglo-Saxon.
Each has his characteristic aptitudes, and these aptitudes should be diverse, else would the scientific concert resemble a quartet where every one wanted to play the violin.
And yet it is not bad for the violin to know what the violon-cello is playing, and vice versa.
This it is that the English and Americans are comprehending more and more; and from this point of view the translations undertaken by Dr. Halsted are most opportune and timely.
Consider first what concerns the mathematical sciences. It is frequently said the English cultivate them only in view of their applications and even that they despise those who have other aims; that speculations too abstract repel them as savoring of metaphysic.
The English, even in mathematics, are to proceed always from the particular to the general, so that they would never have an idea of entering mathematics, as do many Germans, by the gate of the theory of aggregates. They are always to hold, so to speak, one foot in the world of the senses, and never burn the bridges keeping them in communication with reality. They thus are to be incapable of comprehending or at least of appreciating certain theories more interesting than utilitarian, such as the non-Euclidean geometries. According to that, the first two parts of this book, on number and space, should seem to them void of all substance and would only baffle them.
But that is not true. And first of all, are they such uncompromising realists as has been said? Are they absolutely refractory, I do not say to metaphysic, but at least to everything metaphysical?
Recall the name of Berkeley, born in Ireland doubtless, but immediately adopted by the English, who marked a natural and necessary stage in the development of English philosophy.
Is this not enough to show they are capable of making ascensions otherwise than in a captive balloon?
And to return to America, is not the Monist published at Chicago, that review which even to us seems bold and yet which finds readers?
And in mathematics? Do you think American geometers are concerned only about applications? Far from it. The part of the science they cultivate most devotedly is the theory of groups of substitutions, and under its most abstract form, the farthest removed from the practical.
Moreover, Dr. Halsted gives regularly each year a review of all productions relative to the non-Euclidean geometry, and he has about him a public deeply interested in his work. He has initiated this public into the ideas of Hilbert, and he has even written an elementary treatise on 'Rational Geometry,' based on the principles of the renowned German savant.
To introduce this principle into teaching is surely this time to burn all bridges of reliance upon sensory intuition, and this is, I confess, a boldness which seems to me almost rashness.
The American public is therefore much better prepared than has been thought for investigating the origin of the notion of space.
Moreover, to analyze this concept is not to sacrifice reality to I know not what phantom. The geometric language is after all only a language. Space is only a word that we have believed a thing. What is the origin of this word and of other words also? What things do they hide? To ask this is permissible; to forbid it would be, on the contrary, to be a dupe of words; it would be to adore a metaphysical idol, like savage peoples who prostrate themselves before a statue of wood without daring to take a look at what is within.
In the study of nature, the contrast between the Anglo-Saxon spirit and the Latin spirit is still greater.
The Latins seek in general to put their thought in mathematical form; the English prefer to express it by a material representation.
Both doubtless rely only on experience for knowing the world; when they happen to go beyond this, they consider their foreknowledge as only provisional, and they hasten to ask its definitive confirmation from nature herself.
But experience is not all, and the savant is not passive; he does not wait for the truth to come and find him, or for a chance meeting to bring him face to face with it. He must go to meet it, and it is for his thinking to reveal to him the way leading thither. For that there is need of an instrument; well, just there begins the difference—the instrument the Latins ordinarily choose is not that preferred by the Anglo-Saxons.
For a Latin, truth can be expressed only by equations; it must obey laws simple, logical, symmetric and fitted to satisfy minds in love with mathematical elegance.
The Anglo-Saxon to depict a phenomenon will first be engrossed in making a model, and he will make it with common materials, such as our crude, unaided senses show us them. He also makes a hypothesis, he assumes implicitly that nature, in her finest elements, is the same as in the complicated aggregates which alone are within the reach of our senses. He concludes from the body to the atom.
Both therefore make hypotheses, and this indeed is necessary, since no scientist has ever been able to get on without them. The essential thing is never to make them unconsciously.
From this point of view again, it would be well for these two sorts of physicists to know something of each other; in studying the work of minds so unlike their own, they will immediately recognize that in this work there has been an accumulation of hypotheses.
Doubtless this will not suffice to make them comprehend that they on their part have made just as many; each sees the mote without seeing the beam; but by their criticisms they will warn their rivals, and it may be supposed these will not fail to render them the same service.
The English procedure often seems to us crude, the analogies they think they discover to us seem at times superficial; they are not sufficiently interlocked, not precise enough; they sometimes permit incoherences, contradictions in terms, which shock a geometric spirit and which the employment of the mathematical method would immediately have put in evidence. But most often it is, on the other hand, very fortunate that they have not perceived these contradictions; else would they have rejected their model and could not have deduced from it the brilliant results they have often made to come out of it.
And then these very contradictions, when they end by perceiving them, have the advantage of showing them the hypothetical character of their conceptions, whereas the mathematical method, by its apparent rigor and inflexible course, often inspires in us a confidence nothing warrants, and prevents our looking about us.
From another point of view, however, the two conceptions are very unlike, and if all must be said, they are very unlike because of a common fault.
The English wish to make the world out of what we see. I mean what we see with the unaided eye, not the microscope, nor that still more subtile microscope, the human head guided by scientific induction.
The