The Immortal Beaver. Sean Rossiter

Чтение книги онлайн.

Читать онлайн книгу The Immortal Beaver - Sean Rossiter страница 5

The Immortal Beaver - Sean Rossiter

Скачать книгу

a test pilot, Bannock had more in common with the future breed of scientific evaluators than the daredevils of the past who had flown the wings off new types in terminal-velocity dives. He had made it his business to be present when most of the important engineering decisions about the Beaver were made. The prototype was no stranger to him when it was rolled out of Bill Burlison’s experimental shop that August 16 morning.

      

      Although Bannock was no engineer, he had worked closely with the engineering department to resolve the difficult issue of what engine should power the Beaver. Once that was decided, Bannock stayed in touch with the changes mandated by the new engine, changes that extended from nose to tail. His preparation for the first flight would be to work out and review “a test program to develop handling characteristics, performance criteria, and all the data required to take the aircraft up to certification by the Department of Transport.”6

      Inside the cockpit of this outwardly spartan prototype, there were touches of something close to the exotic. Four doors on a small airplane! Having doors for both pilot and co-pilot verged on the luxurious, but was pure practicality for an airplane expected to be so fully loaded the rear doors would be blocked, an airplane that would normally park on one side or another of a dock. In time, two more hatches, in the roof and floor, would be added.

      The instrument panel was as streamlined as anything else on the aircraft. It curved back and down from the base of the windshield with its three vertical slots down the upper middle for the throttle, propeller pitch and fuel mixture levers—equally accessible to pilot and co-pilot—and was neatly finished at the bottom of the slots with a chrome strip on which black paint outlined the shiny capital letters DE HAVILLAND. There were no seats in the prototype except for the pilot’s.

      That morning Bannock looked like the fighter ace he was, in the same Royal Canadian Air Force sunglasses and blue-grey flight suit he had worn on Mosquito operations. Not a hair was out of place. His flight suit, besides fitting well, had plenty of pockets for the pencils, pens, notebooks, maps and calculated data he would carry on the flight. The trousers, rather short to give him freedom in operating the rudder and brake pedals, were crisply ironed. Thick, off-white parachute straps converged from his shoulders and crotch at a quick-release latch on his lower midriff.

      Although most test pilots would say that flying a wide variety of aircraft is the best preparation for test flying, very few could claim to have flown every type in the RCAF wartime inventory, with the British Commonwealth Air Training Plan and then overseas, or that their logbooks had recorded recent post-overhaul test flights in PBY Canso and Catalina flying-boats, DC-3 transports “and even Lancasters”—four-engine wartime bombers converted by DHC for peacetime mapping survey and maritime patrol missions.

      For the finishing touch to his preparations, Bannock had recently flown with George Phillips, chief pilot of the Ontario Department of Lands and Forests, in one of the government’s Stinson Reliants, which had the Beaver’s high-wing layout, a less powerful engine than the Beaver’s Wasp Junior, and was also mounted on floats, Bannock was killing two birds with one stone by getting to know Phillips. Lands and Forests, on behalf of the Ontario Provincial Air Service, was dangling an order for twenty-five airplanes to replace the prewar Stinsons, one of which had shed its wing in flight, before the eager design teams at Fairchild in Montreal and DHC in Downsview. Lands and Forests was a major influence on the Beaver’s preliminary design, encouraging DHC’S engineering director, Doug Hunter, a wartime expatriate from the English parent company, to give it a design load factor of 5.25—that is, the Beaver is theoretically capable of carrying five times its gross weight.

      The first flight of a new airplane in 1947 was a much less complicated affair than it is today. No special instrumentation was carried in the Beaver, and no computer-generated schedule governed Bannock’s actions in the air. He was pretty much on his own. He recalls his first-flight agenda for the Beaver. It was simplicity itself.

      Plans for the first flight included the following:

      Ground handling checks, including taxi tests.

       High-speed taxi tests on the main runway to check directional control and rudder forces.

       High-speed taxi tests to liftoff with and without flaps to check all control forces. Takeoff and climb to approximately 3,000 feet and carry out general handling and engine performance [tests] and obtain a general impression of speeds at different power-settings.

      One strong memory Bannock retains after fifty years is the group of people whose labours had produced the creation he would now subject to a thorough investigation. They were bunched together on the concrete apron outside the experimental shop at the north end of Runway 33.

      “I recall seeing Philip Garratt, managing director; Doug Hunter, engineering director; Jaki Jakimiuk, chief designer; Fred Buller, chief design engineer; Dick Hiscocks, chief aerodynamicist, and Jim Houston, power plant engineer.”

      All six were wearing white shirts, in the formal style of their wartime generation of professionals, four of them with ties. The Beaver’s design team, the next day’s Globe and Mail photo caption stated, “consists of three young Canadians and an expert from Poland and England.”

      Young Canadians Hiscocks and Buller, the two with the most intimate understanding of the airplane’s outline and inner workings, had their sleeves rolled up, looking businesslike and technical in their spectacles. Buller, of course, had just become aware that CF-FHB-X was named after him. Houston, the engine man, was tieless and in a short-sleeved shirt that acknowledged the impossibility of the man responsible for the overall powerplant installation wearing a white shirt with long sleeves. Hunter, the quite British production overseer from Hatfield, had turned his cuffs up only one turn.

      

Image

      The Beaver prototype during flight tests later in 1947, after it had earned the nose-to-tail speed line that characterized most civil production Beavers, DHC

      Among the five men most responsible for the Beaver that morning, only their supervisor, the aristocratic Pole known to his colleagues as Jaki Jakimiuk, continued to wear his suit under the hot mid-morning August sun. It was heavily wrinkled at the elbows and knees. None of them wore sunglasses. Sunglasses were for pilots.

      Garratt, also in shirtsleeves, was photographed later that day with a distinguished group that included Punch Dickins and Frank MacDougall, Ontario’s Deputy Minister of Lands and Forests. MacDougall would soon effectively decide, with his initial twenty-five-aircraft order, whether the Beaver or the Husky would be the bush plane to go into production.

      “With full fuel (79 Imperial gallons) and a single pilot,” Bannock recalls, “we were well within the calculated centre-of-gravity range, so there was no ballast on-board.

      “It was a lovely summer day, with a slight northwest wind, so I taxied out onto Runway 33 at approximately 10 A.M. and commenced the high-speed taxi tests, a series of skip-hops, checking brakes, checking rudder control—directional control.

      

      “At the south end of Runway 33 (which gave me 6,000 feet of paved runway), I went through the takeoff checks that we had established. Runway 33 faces northwest, into the prevailing wind. I was hoping there would be no crosswinds.

      “I commenced a series of high-speed taxi tests doing a short liftoff for the last two or three. I remember thinking I didn’t have enough brake-pedal travel for directional control

Скачать книгу