The Immortal Beaver. Sean Rossiter

Чтение книги онлайн.

Читать онлайн книгу The Immortal Beaver - Sean Rossiter страница 6

The Immortal Beaver - Sean Rossiter

Скачать книгу

which gave me greater leverage on the brakes. The next time I would taxi back and open up and just get airborne at the end of the run. I probably did that four or five times, checking longitudinal control, lateral control, just general handling, before deciding to take off.

      “Using about 10 degrees of flap I opened up the engine to takeoff power (36 MP at 2,300 rpm) and was surprised how quickly the aircraft became airborne [in 15 seconds, according to the Globe and Mail’s story7]. A climbing speed of 74 mph was established with power reduced to 30 MP [manifold pressure, a measure of power derived from the amount of air being pumped into the engine] at 2,000 rpm. I levelled out at about 3,000 feet, staying within gliding distance of the field in case I had any powerplant problems. Cruise power was set at 28 MP at 1,800 rpm.

      “After doing some gentle turns, climbs and descents, my first reaction was how pleasant the Beaver was to fly. It had good pilot visibility, good aileron response, and I had the feeling of lots of power up front.”

      It was at just this moment, with Bannock warmed by the midsummer sun shining through a windshield that, on the prototype alone, was faired back overhead and into the wing’s leading edge, and the satisfaction of knowing the Beaver could fly and fly well, that the crisis struck.

      Experimental shop and engineering staff peer at the pool of engine oil dripping from FHB’s powerplant after the abbreviated first flight. Access panels to the engine’s equipment bay are open. DHC

Image

      For most of the flight so far, barely more than ten minutes, Bannock had been preoccupied with the flight controls. He now paused to look out over the farmland that is now North York and Richmond Hill. Thornhill was a separate village. surrounded by fields, Dufferin Street was still a rural two-lane road which, during the war, had been interrupted by a liftgate at the end of Runway 27 whenever a newly built Mosquito fighter-bomber was being flight-tested.

      Bannock, reassured by the big Wasp Junior’s steady throb on the climbout and the upward spiral he had maintained to stay over the airfield in case of trouble, had glanced at the engine instruments only a couple of times, and then very quickly. Now he looked again.

      The oil-pressure gauge on the prototype was located on a three-in-one dial near the middle of the instrument panel. The all-important cylinder-head temperature gauge took up the top half, with the oil-and fuel-pressure gauges side-by-side below.

      When Bannock glanced at it, the oil pressure was reading 35 pounds per square inch. The ideal figure is 60 psi. That concerned him, but his first reaction was to assume there was some problem with the instrument rather than the engine, which sounded normal. If the engine was losing oil, he knew, that oil would be streaming along the underside of the fuselage, out of sight.

      That small, inconspicuous instrument now had Bannock’s full attention. His eyes returned to it in a matter of seconds. It read 10 psi.

      It no longer mattered whether the problem was with the engine or the gauge. Damaging the engine would put the Beaver program that much further behind Fairchild’s Husky.

      Bannock reached up toward the centre of the instrument panel and pulled the throttle lever back to the bottom of its slot, leaving the engine to idle. He trimmed the Beaver’s nose down, noting that the response from the elevators was not quite what he would have liked.

      As he began a gliding circuit to the left with the engine barely ticking over, he could hear the fuselage skin popping in and out in the slipstream. The Beaver’s thick wing had been formulated to provide the maximum possible lift with the less-powerful engine it was originally designed around, so it was all the more effective when the Wasp Junior was adopted. This wing also made the Beaver a pretty good glider. So much so, in fact, that Bannock regards his dead-stick, or power-off, landing as no more than “reasonable.”

      To the knots of white-shirted men who anxiously watched Bannock approach in near-silence, flying an airplane whose engine tests had been characterized by an unholy racket, this landing was impressive airmanship. Happy to see it on the ground and in one piece, they gathered around the Beaver, asking questions of Bannock as his door opened, then crouched down as the propeller ceased its desultory windmilling and, duckwalking underneath, looked up.

      Ugly streaks of oil defiled the carefully-polished aluminum underside of the Beaver. Some of it began to drip on the concrete apron.

      

Image

      Chapter Two First to fight: Jaki Jakimiuk and the PZL fighters

      Facing page: This PZL P-II was an immediate forerunner of the P-IIc fighters flown by Capt. Mieczyslaw Medwecki and his wingman. Lt. Wladyslaw Gnys, when they took off at first light September 1, 1939, after hearing bombs explode in the distance. A development of the P-7, the P-II was an early product of Wsiewolod Jakimiuk, who supervised the team that designed the Beaver, A.U. SCHMIDT, VIA PETER. M. BOWERS

Image

      Impressive as rest pilot Russ Bannock’s wartime carter as an eleven-victory night-fighter ace was, it was not that much more distinguished than the careers of other members of the team that developed the Beaver. In fact, the chief engineer of the Beaver design team, Wsiewolod Jakimiuk, was part of aviation history long before the Beaver appeared. He was responsible for the first fighters to engage the Luftwaffe ay the dawn of the Second World War.

      There is something Canadian in the Beaver having design origins so far from its Downsview birthplace—in a suburb of Warsaw, Poland, where the most advanced fighter planes of their time appeared in 1929. It is likely that no combat aircraft so advanced at is conception was as obsolete when called upon to fight as the PZL P-IIC Jedenastka (Eleventh) was in the minutes before first light, September 1, 1919, when the German pilots had been at work over western Poland for less than an hour.

      The PZL’s superannuation makes its gallant record in the defence of Poland all the more noteworthy. The 1941 warplanes allocated Nazi Germany’s Luftwaffe for Operation Ostmarkflug, the invasion of Poland, were much more modern. The Luftwaffe outnumbered Poland’s air force ten-to-one in aircraft and three-to-one in fighters.

      The many reconnaissance flights that presaged the invasion showed that even Germany’s Dornier Do 17 bomber had a 20-km/hr speed advantage over the PZL. The Messerschmitt Bf 109 fighter had a 150-km/hr edge and 2,000-metre higher ceiling, giving its pilot the oft-decisive advantage of initiating and breaking off combat at will.

      At 05:30 hours, less than sixty minutes into the war, an open-cockpit gull-winged P-IIC piloted by Lieutenant Wladyslaw Gnys of 121 Eskadra, the “Winged Arrows,” shot down the first of 285 aerial raiders that Polish Military Aviation, the Lotnictwo Wojskowe, would destroy during the brief but intense resistance by the first of Hitler’s victims to fight back.

      In his little P-IIC, Gnys—old for a fighter pilot at one week past his 29th birthday—had scarcely more firepower at his disposal than his World War I forebears. In fact, his mount was conceptually similar and nearly identical in layout to the Fokker D.VIII, the epitome of combat aircraft development in 1918. Through such advances as all-metal construction, structural detail development and the use of up-to-date licence-built engines developed in England, the PZL series established “new standards of aerodynamic cleanliness”1 when

Скачать книгу