Aristotle: The Complete Works. Aristotle
Чтение книги онлайн.
Читать онлайн книгу Aristotle: The Complete Works - Aristotle страница 181
Moreover, inasmuch as it is the same present that belongs to both the times, and it is possible for a thing to be in motion throughout one time and to be at rest throughout the other, and that which is in motion or at rest for the whole of a time will be in motion or at rest as the case may be in any part of it in which it is naturally designed to be in motion or at rest: this being so, the assumption that there can be motion or rest in a present will carry with it the implication that the same thing can at the same time be at rest and in motion: for both the times have the same extremity, viz. the present.
Again, when we say that a thing is at rest, we imply that its condition in whole and in part is at the time of speaking uniform with what it was previously: but the present contains no ‘previously’: consequently, there can be no rest in it.
It follows then that the motion of that which is in motion and the rest of that which is at rest must occupy time.
<
div id="section50" class="section" title="4">
4
Further, everything that changes must be divisible. For since every change is from something to something, and when a thing is at the goal of its change it is no longer changing, and when both it itself and all its parts are at the starting-point of its change it is not changing (for that which is in whole and in part in an unvarying condition is not in a state of change); it follows, therefore, that part of that which is changing must be at the starting-point and part at the goal: for as a whole it cannot be in both or in neither. (Here by ‘goal of change’ I mean that which comes first in the process of change: e.g. in a process of change from white the goal in question will be grey, not black: for it is not necessary that that that which is changing should be at either of the extremes.) It is evident, therefore, that everything that changes must be divisible.
Now motion is divisible in two senses. In the first place it is divisible in virtue of the time that it occupies. In the second place it is divisible according to the motions of the several parts of that which is in motion: e.g. if the whole AG is in motion, there will be a motion of AB and a motion of BG. That being so, let DE be the motion of the part AB and EZ the motion of the part BG. Then the whole DZ must be the motion of AG: for DZ must constitute the motion of AG inasmuch as DE and EZ severally constitute the motions of each of its parts. But the motion of a thing can never be constituted by the motion of something else: consequently the whole motion is the motion of the whole magnitude.
Again, since every motion is a motion of something, and the whole motion DZ is not the motion of either of the parts (for each of the parts DE, EZ is the motion of one of the parts AB, BG) or of anything else (for, the whole motion being the motion of a whole, the parts of the motion are the motions of the parts of that whole: and the parts of DZ are the motions of AB, BG and of nothing else: for, as we saw, a motion that is one cannot be the motion of more things than one): since this is so, the whole motion will be the motion of the magnitude ABG.
Again, if there is a motion of the whole other than DZ, say the the of each of the arts may be subtracted from it: and these motions will be equal to DE, EZ respectively: for the motion of that which is one must be one. So if the whole motion OI may be divided into the motions of the parts, OI will be equal to DZ: if on the other hand there is any remainder, say KI, this will be a motion of nothing: for it can be the motion neither of the whole nor of the parts (as the motion of that which is one must be one) nor of anything else: for a motion that is continuous must be the motion of things that are continuous. And the same result follows if the division of OI reveals a surplus on the side of the motions of the parts. Consequently, if this is impossible, the whole motion must be the same as and equal to DZ.
This then is what is meant by the division of motion according to the motions of the parts: and it must be applicable to everything that is divisible into parts.
Motion is also susceptible of another kind of division, that according to time. For since all motion is in time and all time is divisible, and in less time the motion is less, it follows that every motion must be divisible according to time. And since everything that is in motion is in motion in a certain sphere and for a certain time and has a motion belonging to it, it follows that the time, the motion, the being-in-motion, the thing that is in motion, and the sphere of the motion must all be susceptible of the same divisions (though spheres of motion are not all divisible in a like manner: thus quantity is essentially, quality accidentally divisible). For suppose that A is the time occupied by the motion B. Then if all the time has been occupied by the whole motion, it will take less of the motion to occupy half the time, less again to occupy a further subdivision of the time, and so on to infinity. Again, the time will be divisible similarly to the motion: for if the whole motion occupies all the time half the motion will occupy half the time, and less of the motion again will occupy less of the time.
In the same way the being-in-motion will also be divisible. For let G be the whole being-in-motion. Then the being-in-motion that corresponds to half the motion will be less than the whole being-in-motion, that which corresponds to a quarter of the motion will be less again, and so on to infinity. Moreover by setting out successively the being-in-motion corresponding to each of the two motions DG (say) and GE, we may argue that the whole being-in-motion will correspond to the whole motion (for if it were some other being-in-motion that corresponded to the whole motion, there would be more than one being-in motion corresponding to the same motion), the argument being the same as that whereby we showed that the motion of a thing is divisible into the motions of the parts of the thing: for if we take separately the being-in motion corresponding to each of the two motions, we shall see that the whole being-in motion is continuous.
The same reasoning will show the divisibility of the length, and in fact of everything that forms a sphere of change (though some of these are only accidentally divisible because that which changes is so): for the division of one term will involve the division of all. So, too, in the matter of their being finite or infinite, they will all alike be either the one or the other. And we now see that in most cases the fact that all the terms are divisible or infinite is a direct consequence of the fact that the thing that changes is divisible or infinite: for the attributes ‘divisible’ and ‘infinite’ belong in the first instance to the thing that changes. That divisibility does so we have already shown: that infinity does so will be made clear in what follows?
<
div id="section51" class="section" title="5">
5
Since everything that changes changes from something to something, that which has changed must at the moment when it has first changed be in that to which it has changed. For that which changes retires from or leaves that from which it changes: and leaving, if not identical with changing, is at any rate a consequence of it. And if leaving is a consequence of changing, having left is a consequence of having changed: for there is a like relation between the two in each case.
One kind of change, then, being change in a relation of contradiction, where a thing has changed from not-being to being it has left not-being. Therefore it will be in being: for everything must either be or not be. It is evident, then, that in contradictory change that which has changed must be in that to which it has changed. And if this is true in this kind of change, it will be true in all other kinds as well: for in this matter what holds good in the case of one will hold good likewise in the case of the rest.
Moreover, if we take each kind of change separately, the truth of our conclusion will be equally evident, on