Aristotle: The Complete Works. Aristotle

Чтение книги онлайн.

Читать онлайн книгу Aristotle: The Complete Works - Aristotle страница 183

Aristotle: The Complete Works - Aristotle

Скачать книгу

ceased from its change must either be changing or have changed in any part of the time of its change, and since it cannot be changing in a moment, it follows that it must have changed at every moment in the time: consequently, since the moments are infinite in number, everything that is changing must have completed an infinite number of changes.

      And not only must that which is changing have changed, but that which has changed must also previously have been changing, since everything that has changed from something to something has changed in a period of time. For suppose that a thing has changed from A to B in a moment. Now the moment in which it has changed cannot be the same as that in which it is at A (since in that case it would be in A and B at once): for we have shown above that that that which has changed, when it has changed, is not in that from which it has changed. If, on the other hand, it is a different moment, there will be a period of time intermediate between the two: for, as we saw, moments are not consecutive. Since, then, it has changed in a period of time, and all time is divisible, in half the time it will have completed another change, in a quarter another, and so on to infinity: consequently when it has changed, it must have previously been changing.

      Moreover, the truth of what has been said is more evident in the case of magnitude, because the magnitude over which what is changing changes is continuous. For suppose that a thing has changed from G to D. Then if GD is indivisible, two things without parts will be consecutive. But since this is impossible, that which is intermediate between them must be a magnitude and divisible into an infinite number of segments: consequently, before the change is completed, the thing changes to those segments. Everything that has changed, therefore, must previously have been changing: for the same proof also holds good of change with respect to what is not continuous, changes, that is to say, between contraries and between contradictories. In such cases we have only to take the time in which a thing has changed and again apply the same reasoning. So that which has changed must have been changing and that which is changing must have changed, and a process of change is preceded by a completion of change and a completion by a process: and we can never take any stage and say that it is absolutely the first. The reason of this is that no two things without parts can be contiguous, and therefore in change the process of division is infinite, just as lines may be infinitely divided so that one part is continually increasing and the other continually decreasing.

      So it is evident also that that that which has become must previously have been in process of becoming, and that which is in process of becoming must previously have become, everything (that is) that is divisible and continuous: though it is not always the actual thing that is in process of becoming of which this is true: sometimes it is something else, that is to say, some part of the thing in question, e.g. the foundation-stone of a house. So, too, in the case of that which is perishing and that which has perished: for that which becomes and that which perishes must contain an element of infiniteness as an immediate consequence of the fact that they are continuous things: and so a thing cannot be in process of becoming without having become or have become without having been in process of becoming. So, too, in the case of perishing and having perished: perishing must be preceded by having perished, and having perished must be preceded by perishing. It is evident, then, that that which has become must previously have been in process of becoming, and that which is in process of becoming must previously have become: for all magnitudes and all periods of time are infinitely divisible.

      Consequently no absolutely first stage of change can be represented by any particular part of space or time which the changing thing may occupy.

      <

      div id="section53" class="section" title="7">

      Now since the motion of everything that is in motion occupies a period of time, and a greater magnitude is traversed in a longer time, it is impossible that a thing should undergo a finite motion in an infinite time, if this is understood to mean not that the same motion or a part of it is continually repeated, but that the whole infinite time is occupied by the whole finite motion. In all cases where a thing is in motion with uniform velocity it is clear that the finite magnitude is traversed in a finite time. For if we take a part of the motion which shall be a measure of the whole, the whole motion is completed in as many equal periods of the time as there are parts of the motion. Consequently, since these parts are finite, both in size individually and in number collectively, the whole time must also be finite: for it will be a multiple of the portion, equal to the time occupied in completing the aforesaid part multiplied by the number of the parts.

      But it makes no difference even if the velocity is not uniform. For let us suppose that the line AB represents a finite stretch over which a thing has been moved in the given time, and let GD be the infinite time. Now if one part of the stretch must have been traversed before another part (this is clear, that in the earlier and in the later part of the time a different part of the stretch has been traversed: for as the time lengthens a different part of the motion will always be completed in it, whether the thing in motion changes with uniform velocity or not: and whether the rate of motion increases or diminishes or remains stationary this is none the less so), let us then take AE a part of the whole stretch of motion AB which shall be a measure of AB. Now this part of the motion occupies a certain period of the infinite time: it cannot itself occupy an infinite time, for we are assuming that that is occupied by the whole AB. And if again I take another part equal to AE, that also must occupy a finite time in consequence of the same assumption. And if I go on taking parts in this way, on the one hand there is no part which will be a measure of the infinite time (for the infinite cannot be composed of finite parts whether equal or unequal, because there must be some unity which will be a measure of things finite in multitude or in magnitude, which, whether they are equal or unequal, are none the less limited in magnitude); while on the other hand the finite stretch of motion AB is a certain multiple of AE: consequently the motion AB must be accomplished in a finite time. Moreover it is the same with coming to rest as with motion. And so it is impossible for one and the same thing to be infinitely in process of becoming or of perishing. The reasoning he will prove that in a finite time there cannot be an infinite extent of motion or of coming to rest, whether the motion is regular or irregular. For if we take a part which shall be a measure of the whole time, in this part a certain fraction, not the whole, of the magnitude will be traversed, because we assume that the traversing of the whole occupies all the time. Again, in another equal part of the time another part of the magnitude will be traversed: and similarly in each part of the time that we take, whether equal or unequal to the part originally taken. It makes no difference whether the parts are equal or not, if only each is finite: for it is clear that while the time is exhausted by the subtraction of its parts, the infinite magnitude will not be thus exhausted, since the process of subtraction is finite both in respect of the quantity subtracted and of the number of times a subtraction is made. Consequently the infinite magnitude will not be traversed in finite time: and it makes no difference whether the magnitude is infinite in only one direction or in both: for the same reasoning will hold good.

      This having been proved, it is evident that neither can a finite magnitude traverse an infinite magnitude in a finite time, the reason being the same as that given above: in part of the time it will traverse a finite magnitude and in each several part likewise, so that in the whole time it will traverse a finite magnitude.

      And since a finite magnitude will not traverse an infinite in a finite time, it is clear that neither will an infinite traverse a finite in a finite time. For if the infinite could traverse the finite, the finite could traverse the infinite; for it makes no difference which of the two is the thing in motion; either case involves the traversing of the infinite by the finite. For when the infinite magnitude A is in motion a part of it, say GD, will occupy the finite and then another, and then another, and so on to infinity. Thus the two results will coincide: the infinite will have completed a motion over the finite and the finite will have traversed the infinite: for it would seem to be impossible for the motion of the infinite over the finite to occur in any way other than by the finite traversing the infinite either by locomotion over it or by measuring it. Therefore, since this is

Скачать книгу