Geochemistry and the Biosphere. Vladimir I. Vernadsky

Чтение книги онлайн.

Читать онлайн книгу Geochemistry and the Biosphere - Vladimir I. Vernadsky страница 10

Автор:
Жанр:
Серия:
Издательство:
Geochemistry and the Biosphere - Vladimir I. Vernadsky

Скачать книгу

renewal of the centuries-old ideas about our surroundings and ourselves, captures us more and more every day. It inevitably penetrates into the domains of separate sciences, into the field of scientific work. These new views concern not only the inert matter that surrounds us, but they also embrace the phenomena of life; they change our notions in the fields of knowledge that we consider the closest to us and the most important. We can say that never in the history of human thought, have the idea and feeling of the whole, and of the causal interrelation of all observed phenomena, possessed such depth, sharpness and clarity as they have reached now in the twentieth century.

      The study of the change that has taken place in these ideas and notions makes us think that we are still very far from the ultimate result, and that we have hardly begun to realize the route that the new scientific work has taken. This must be taken into account while evaluating the new concepts of atoms and chemical elements that penetrate our present-day science. They are taking shape in the unsteady, changing, and almost unfamiliar picture of the cosmos. Atoms and elements – the old intuitions of ancient thought – are constantly changing their image and taking new forms in these new and contradictory circumstances.

      Each chemical element, we think, corresponds to a certain atom or atoms that are distinctly different in composition from other atoms corresponding to other chemical elements. The atom of the science of the twentieth century is not the atom of the ancient thinkers of Hellas and India, and neither is it the atom seen by the Moslem mystics of the Middle Ages and by the scientists of the last four centuries of our civilization. It is quite a new idea – a new notion. And although the historical roots of our present-day thoughts can be traced back to the atoms and elements of ancient science and philosophy, the changes undergone by them are so great that there is nothing left from the old concepts except the names.

      Everything has changed crucially. Maybe it would have been more correct to give a new name to the “atom” of the twentieth century, because it could be done without doing any harm to the historical truth. Our atom does not in the least resemble the matter it forms. The laws of its existence are not similar to the laws of the matter formed by it. In matter, in its physical and chemical characteristics, we observe only general statistical manifestations of large conglomerates of atoms. These show, in a vague and complicated form, only an insignificant part of the characteristics of the atoms themselves, and of their inner structure.

      A deep gap separates the scientific model of our surroundings and ourselves – according to the manifestations conditioned by our senses (the macroscopic view of the cosmos) – from the scientifically constructed cosmos where the atom reigns (the microscopic view of the cosmos). The principal physical notions, as well as the method of scientific thinking, suffer a crucial change in these manifestations. As soon as we make scientific advances into the world of the atom, our concept of physical causality sharply changes and deepens, while the century-old ideas about it are destroyed. [In addition to the micro and macro concepts of matter] a third aspect of the cosmos is taking shape at present thanks to the success of astronomical observation and research of the twentieth century: the world of space-time scientifically embraced by large numbers, that – like the atom world – cannot be measured by our senses.

      These three concepts about the world, about the reality covered by science, are not coordinated. Everything is in a state of creative motion, both scientifically and philosophically. The atom and its corresponding chemical element are present in all three forms of the worldview. It seems very probable that with attempts at further generalization, great significance will be gained through the trend of scientific synthesis that was put forward in the middle of the eighteenth century by the great Serbo-Croatian thinker, Ruggiero Boscovich (1711–1787), and that is drawing more and more attention at present.

      An atom is not a formless and structureless “center of forces,” but a regular conglomerate that according to Boscovich is comprised of matter and universe.1 The history of this trend of thought, which seems to outline and anticipate the way of future scientific thought, has not yet been written. Another great natural scientist, Boscovich’s contemporary, James Hutton (1726–1797), approached the same world view independently and laid the foundations for contemporary geology.

      An integrated scientific worldview does not yet exist, but the countless new facts unveiling the structure of nature in all its aspects make our thought go deeper and deeper into the realm of atoms, and still further, to the minute entities of which the atoms consist; the real units of time and space. These facts have led to the creation of new scientific disciplines that differ from the former ones, which studied matter – the conglomerate of countless atoms – from a statistical standpoint.

      In the twentieth century we are witnessing the flowering of this new kind of science of individual atoms in the form of atomic physics, radiology, radiochemistry, and most recently geochemistry – a small part of astrophysics. Geochemistry deals with the scientific study of chemical elements, i.e., the atoms of the Earth’s crust and the whole planet. It studies their history, their distribution and motion in space and time, and their ‘genetic’ correlations on our planet. It is distinctly different from mineralogy, which studies in the same time and space of Earth’s history only the history of atomic compounds, molecules, and crystals. In this strictly limited terrestrial planetary field, geochemistry discovers phenomena and laws whose existence we could only anticipate in the boundless fields of celestial space.

      It is obvious to us now that the chemical elements are not distributed chaotically in conglomerates of matter in spaces such as nebulae, stars, planets, atomic clouds, and cosmic debris. Their distribution depends on the structure of their atoms. The atomic geometry of space and time, expressed by the history and distribution of atoms throughout the whole length and duration of the cosmos, exists in large and small forms, in the structure of both a cosmic nebula and a minute organism.2 The same laws regulate great celestial bodies and planetary systems, as well as the smallest molecules and maybe even the more restricted areas of the separate atoms.

      More than two and a half centuries ago, the Dutchman, Christiaan Huygens3 (1629–1695) – one of the greatest scientists – discovered the inevitable identity of matter and the forces of the Universe, and the manifestations of life throughout its entirety. The identity of matter and forces was based on the gravity laws of his contemporary, I. Newton. It embraced also the Cartesian philosophy that reigned supreme in physicists’ minds and hindered the understanding of Newton’s scientific discoveries and generalizations of 1676 up until 1730–1740. In the seventeenth century, the notion of the unity of, speaking in modern terms, matter and energy throughout the entire cosmos, the whole of space and time, that had sometimes sprung up in the course of centuries, became part of the scientific understanding of the Universe. But Huygens was one of the few scientists who had clearly expressed the inevitable consequence of this notion: the cosmic unity of life we study in the biosphere.

      One hundred fifty years after Huygens, the Englishman W. Hyggins, through scientific experiment and observation by spectrum analysis, proved the identity of chemical elements (atoms) of the stellar worlds based on terrestrial manifestations. The present-day creative explosion of ideas has not shattered this essential principle. He expressed it in the new concept of the identity of the basic elements (electrons, neutrons, protons, and the newly discovered positive electrons, or ‘positrons’), which make up atoms or chemical elements, and also in that of the genetic, though complicated connection existing between the atoms of different structures. Studying the laws and regularities of the history of elements of our planet, and studying the structure of the Earth’s atoms, we study at the same time the regularities of the smallest spaces and smallest moments that are indivisibly connected with the great whole of the cosmos. There are deep analogies between them and even more than just analogies.

      Protons, electrons, positrons, photons, and quanta embrace the whole of time and space – all three aspects of the cosmos. They also constitute and embrace atoms. But chemical manifestations of atoms studied in geochemistry are only a small part of the phenomena connected with these main elements of the cosmos. The chemistry of the cosmos and geochemistry,

Скачать книгу