Federated Learning. Yang Liu

Чтение книги онлайн.

Читать онлайн книгу Federated Learning - Yang Liu страница 3

Federated Learning - Yang  Liu Synthesis Lectures on Artificial Intelligence and Machine Learning

Скачать книгу

1 Introduction

       1.1 Motivation

       1.2 Federated Learning as a Solution

       1.2.1 The Definition of Federated Learning

       1.2.2 Categories of Federated Learning

       1.3 Current Development in Federated Learning

       1.3.1 Research Issues in Federated Learning

       1.3.2 Open-Source Projects

       1.3.3 Standardization Efforts

       1.3.4 The Federated AI Ecosystem

       1.4 Organization of this Book

       2 Background

       2.1 Privacy-Preserving Machine Learning

       2.2 PPML and Secure ML

       2.3 Threat and Security Models

       2.3.1 Privacy Threat Models

       2.3.2 Adversary and Security Models

       2.4 Privacy Preservation Techniques

       2.4.1 Secure Multi-Party Computation

       2.4.2 Homomorphic Encryption

       2.4.3 Differential Privacy

       3 Distributed Machine Learning

       3.1 Introduction to DML

       3.1.1 The Definition of DML

       3.1.2 DML Platforms

       3.2 Scalability-Motivated DML

       3.2.1 Large-Scale Machine Learning

       3.2.2 Scalability-Oriented DML Schemes

       3.3 Privacy-Motivated DML

       3.3.1 Privacy-Preserving Decision Trees

       3.3.2 Privacy-Preserving Techniques

       3.3.3 Privacy-Preserving DML Schemes

       3.4 Privacy-Preserving Gradient Descent

       3.4.1 Vanilla Federated Learning

       3.4.2 Privacy-Preserving Methods

       3.5 Summary

       4 Horizontal Federated Learning

       4.1 The Definition of HFL

       4.2 Architecture of HFL

       4.2.1 The Client-Server Architecture

       4.2.2 The Peer-to-Peer Architecture

       4.2.3 Global Model Evaluation

       4.3 The Federated Averaging Algorithm

       4.3.1 Federated Optimization

       4.3.2 The FedAvg Algorithm

       4.3.3 The Secured FedAvg Algorithm

       4.4 Improvement of the FedAvg Algorithm

       4.4.1 Communication Efficiency

       4.4.2 Client Selection

       4.5 Related Works

       4.6 Challenges and Outlook

       5 Vertical Federated Learning

       5.1 The Definition of VFL

       5.2 Architecture of VFL

       5.3 Algorithms of VFL

       5.3.1 Secure Federated Linear Regression

       5.3.2 Secure Federated Tree-Boosting

       5.4 Challenges and Outlook

       6 Federated Transfer Learning

       6.1 Heterogeneous Federated Learning

       6.2 Federated Transfer Learning

       6.3 The FTL Framework

       6.3.1 Additively Homomorphic Encryption

       6.3.2 The FTL Training Process

       6.3.3 The FTL Prediction Process

       6.3.4 Security Analysis

      

Скачать книгу