Dirt. David R. Montgomery

Чтение книги онлайн.

Читать онлайн книгу Dirt - David R. Montgomery страница 7

Автор:
Жанр:
Серия:
Издательство:
Dirt - David R. Montgomery

Скачать книгу

into the soil.

      The history of life is inextricably related to the history of soil. Early in Earth's history bare rock covered the land. Rainwater infiltrating down into barren ground slowly leached elements out of near-surface materials, transforming rock-forming minerals into clays. Water slowly percolating down through soils redistributed the new clays, forming primitive mineral soils. The world's oldest fossil soil is more than three billion years old, almost as old as the most ancient sedimentary rock and probably land itself. Clay formation appears to have dominated early soil formation; the earliest fossil soils are unusually rich in potassium because there were no plants to remove nutrients from the clays.

      Some scientists have proposed that clay minerals even played a key role in the evolution of life by providing highly reactive surfaces that acted as a substrate upon which organic molecules assembled into living organisms. The fossil record of life in marine sediments extends back to about the same time as the oldest soil. Perhaps it is no coincidence that guanine and cytosine (two of the four key bases in DNA) form in clay-rich solutions. Whether or not the breakdown of rocks into clays helped kick-start life, evolution of the earliest soils played a key role in making Earth inhabitable for more complex life.

      Four billion years ago Earth's surface temperature was close to boiling. The earliest bacteria were close relatives of those that still carpet Yellowstone's spectacular thermal pools. Fortunately, the growth and development of these heat-loving bacteria increased weathering rates enough to form primitive soils on rocks protected beneath bacterial mats. Their consumption of atmospheric carbon dioxide cooled the planet by 30°C to 45°C—an inverse greenhouse effect. Earth would be virtually uninhabitable were it not for these soil-making bacteria.

      The evolution of soils allowed plants to colonize the land. Some 350 million years ago, primitive plants spread up deltas and into coastal valleys where rivers deposited fresh silt eroded off bare highlands. Once plants reached hillsides and roots bound rock fragments and dirt together, primitive soils promoted the breakdown of rocks to form more soil. Respiration by plant roots and soil biota raised carbon dioxide levels ten to a hundred times above atmospheric levels, turning soil water into weak carbonic acid. Consequently, rocks buried beneath vegetation-covered soils decayed much faster than bare rock exposed at the surface. The evolution of plants increased rates of soil formation, which helped create soils better suited to support more plants.

      Once organic matter began to enrich soils and support the growth of more plants, a self-reinforcing process resulted in richer soil better suited to grow even more plants. Ever since, organic-rich topsoil has sustained itself by supporting plant communities that supply organic matter back to the soil. Larger and more abundant plants enriched soils with decaying organic matter and supported more animals that also returned nutrients to the soil when they too died. Despite the occasional mass extinction, life and soils symbiotically grew and diversified through climate changes and shifting arrangements of continents.

      As soil completes the cycle of life by decomposing and recycling organic matter and regenerating the capacity to support plants, it serves as a filter that cleanses and converts dead stuff into nutrients that feed new life. Soil is the interface between the rock that makes up our planet and the plants and animals that live off sunlight and nutrients leached out of rocks. Plants take carbon directly from the air and water from the soil, but just as in a factory, shortages of essential components limit soil productivity. Three elements—nitrogen, potassium, and phosphorus—usually limit plant growth and control the productivity of whole ecosystems. But in the big picture, soil regulates the transfer of elements from inside the earth to the surrounding atmosphere. Life needs erosion to keep refreshing the soil—just not so fast as to sweep it away altogether.

      At the most fundamental level, terrestrial life needs soil—and life plus dirt, in turn, make soil. Darwin estimated that almost four hundred pounds of worms lived in an acre of good English soil. Rich topsoil also harbors microorganisms that help plants get nutrients from organic matter and mineral soil. Billions of microscopic bugs can live in a handful of topsoil; those in a pound of fertile dirt outnumber Earth's human population. That's hard to imagine when you're packed into the Tokyo subway or trying to make your way down the streets of Calcutta or New York City. Yet our reality is built on, and in many ways depends upon, the invisible world of microbes that accelerate the release of nutrients and decay of organic matter, making the land hospitable for plants and therefore people.

      Tucked away out of sight, soil-dwelling organisms account for much of the biodiversity of terrestrial ecosystems. Plants supply underground biota with energy by providing organic matter through leaf litter and the decay of dead plants and animals. Soil organisms, in turn, supply plants with nutrients by accelerating rock weathering and the decomposition of organic matter. Unique symbiotic communities of soil-dwelling organisms form under certain plant communities. This means that changes in plant communities lead to changes in the soil biota that can affect soil fertility and, in turn, plant growth.

      Along with Darwin's worms, an impressive array of physical and chemical processes help build soil. Burrowing animals—like gophers, termites, and ants—mix broken rock into the soil. Roots pry rocks apart. Falling trees churn up rock fragments and mix them into the soil. Formed under great pressure deep within the earth, rocks expand and crack apart as they near the ground. Big rocks break down into little rocks and eventually into their constituent mineral grains owing to stresses from wetting and drying, freezing and thawing, or heating by wildfires. Some rock-forming minerals, like quartz, are quite resistant to chemical attack. They just break down into smaller and smaller pieces of the same stuff. Other minerals, particularly feldspars and micas, readily weather into clays.

      Too small to see individually, clay particles are small enough for dozens to fit on the period at the end of this sentence. All those microscopic clays fit together tightly enough to seal the ground surface and promote runoff of rainwater. Although fresh clay minerals are rich in plant nutrients, once clay absorbs water it holds onto it tenaciously. Clay-rich soils drain slowly and form a thick crust when dry. Far larger, even the smallest sand grains are visible to the naked eye. Sandy soil drains rapidly, making it difficult for plants to grow. Intermediate in size between sand and clay, silt is ideal for growing crops because it retains enough water to nourish plants, yet drains quickly enough to prevent waterlogging. In particular, the mix of clay, silt, and sand referred to as loam makes the ideal agricultural soil because it allows for free air circulation, good drainage, and easy access to plant nutrients.

      Clay minerals are peculiar in that they have a phenomenal amount of surface area. There can be as much as two hundred acres of mineral surfaces in half a pound of clay. Like the thin pieces of paper that compose a deck of cards, clay is made up of layered minerals with cations—like potassium, calcium, and magnesium—sandwiched in between silicate sheets. Water that works its way into the clay structure can dissolve cations, contributing to a soil solution rich in plant-essential nutrients.

      Fresh clays therefore make for fertile soil, with lots of cations loosely held on mineral surfaces. But as weathering continues, more of the nutrients get leached from a soil as fewer elements remain sandwiched between the silicates. Eventually, few nutrients are left for plants to use. Although clays can also bind soil organic matter, replenishing the stock of essential nutrients like phosphorus and sulfur depends on weathering to liberate new nutrients from fresh rock.

      In contrast, most nitrogen enters soils from biological fixation of atmospheric nitrogen. While there is no such thing as a nitrogen-fixing plant, bacteria symbiotic with plant hosts, like clover (to name but one), reduce inert atmospheric nitrogen to biologically active ammonia in root nodules 2—3 mm long. Once incorporated into soil organic matter, nitrogen can circulate from decaying things back into plants as soil microflora secrete enzymes that break down large organic polymers into soluble forms, such as amino acids, that plants can take up and reuse.

      How fast soil is produced depends on environmental conditions. In 1941 UC Berkeley professor Hans Jenny proposed that the character of a soil reflected topography, climate,

Скачать книгу