Dirt. David R. Montgomery
Чтение книги онлайн.
Читать онлайн книгу Dirt - David R. Montgomery страница 8
The geology of a region controls the kind of soil produced when rocks break down, as they eventually must when exposed at the earth's surface. Granite decomposes into sandy soils. Basalt makes clay-rich soils. Limestone just dissolves away, leaving behind rocky landscapes with thin soils and lots of caves. Some rocks weather rapidly to form thick soils; others resist erosion and only slowly build up thin soils. Because the nutrients available to plants depend on the chemical composition of the soil's parent material, understanding soil formation begins with the rocks from which the soil originates.
Topography also affects the soil. Thin soils with fresh minerals blanket steep slopes in areas where geologic activity raised mountains and continues to refresh slopes. The gentle slopes of geologically quieter landscapes tend to have thicker, more deeply weathered soils.
Climate strongly influences soil formation. High rainfall rates and hot temperatures favor chemical weathering and the conversion of rock-forming minerals into clays. Cold climates accelerate the mechanical breakdown of rocks into small pieces through expansion and contraction during freeze-thaw cycles. At the same time, cold temperatures retard chemical weathering. So alpine and polar soils tend to have lots of fresh mineral surfaces that can yield new nutrients, whereas tropical soils tend to make poor agricultural soils because they consist of highly weathered clays leached of nutrients.
Temperature and rainfall primarily control the plant communities that characterize different ecosystems. At high latitudes, perpetually frozen ground can support only the low scrub of arctic tundra. Moderate temperatures and rainfall in temperate latitudes support forests that produce organic-rich soils by dropping their leaves to rot on the ground. Drier grassland soils that support a lot of microbial activity receive organic matter both from the recycling of dead roots and leaves and from the manure of grazing animals. Arid environments typically have thin rocky soils with sparse vegetation. Hot temperatures and high rainfall near the equator produce lush rainforests growing on leached-out soils by recycling nutrients inherited from weathering and recycled from decaying vegetation. In this way, global climate zones set the template upon which soils and vegetation communities evolved.
Differences in geology and climate make soils in different regions more or less capable of sustained agriculture. In particular, the abundant rainfall and high weathering rates on the gentle slopes of many tropical landscapes mean that after enough time, rainfall seeping into the ground leaches out almost all of the nutrients from both the soil and the weathered rocks beneath the soil. Once this happens, the lush vegetation essentially feeds on itself, retaining and recycling nutrients inherited from rocks weathered long ago. As most of the nutrients in these areas reside not in the soil but in the plants themselves, once the native vegetation disappears, so does the productive capacity of the soil. Often too few nutrients remain to support either crops or livestock within decades of deforestation. Nutrient-poor tropical soils illustrate the general rule that life depends on recycling past life.
Humans have not yet described all the species present in any natural soil. Yet soils and the biota that inhabit them provide clean drinking water, recycle dead materials into new life, facilitate the delivery of nutrients to plants, store carbon, and even remediate wastes and pollutants—as well as produce almost all of our food.
Out of sight and out of mind, soil-dwelling organisms can be greatly influenced by agricultural practices. Tilling the soil can kill large soil-dwelling organisms, and reduce the number of earthworms. Pesticides can exterminate microbes and microfauna. Conventional short-rotation, single-crop farming can reduce the diversity, abundance, and activity of beneficial soil fauna, and indirectly encourage proliferation of soilborne viruses, pathogens, and crop-eating insects. Generally, so-called alternative agricultural systems tend to better retain soil-dwelling organisms that enhance soil fertility.
Like soil formation, soil erosion rates depend on soil properties inherited from the parent material (rocks), and the local climate, organisms, and topography. A combination of textural properties determines a soil's ability to resist erosion: its particular mix of silt, sand, or clay, and binding properties from aggregation with soil organic matter. Higher organic matter content inhibits erosion because soil organic matter binds soil particles together, generating aggregates that resist erosion. A region's climate influences erosion rates through how much precipitation falls and whether it flows off the land as rivers or glaciers. Topography matters as well; all other things being equal, steeper slopes erode faster than gentle slopes. However, greater rainfall not only generates more runoff, and therefore more erosion, it also promotes plant cover that protects the soil from erosion. This basic trade-off means that the amount of rainfall does not simply dictate the pace of soil erosion. Wind can be a dominant erosion process in arid environments or on bare disturbed soil, like agricultural fields. Biological processes, whether Darwin's worms or human activities such as plowing, also gradually move soil downslope.
Although different types of erosional processes are more or less important in different places, a few tend to dominate. When rain falls onto the ground it either sinks into the soil or runs off over it; greater runoff leads to more erosion. Where enough runoff accumulates, flowing sheets of water can pick up and transport soil, carving small channels, called rills, which collect into larger, more erosive gullies—the name for incised channels large enough that they cannot be plowed over. On steep slopes, intense or sustained rainfall can saturate soil enough to trigger landsliding. Wind can pick up and erode dry soil with sparse vegetation cover. While many of these processes operate in a landscape, the dominant process varies with the topography and climate.
In the 1950s soil erosion researchers began seeking a general equation to explain soil loss. Combining data from erosion research stations they showed that soil erosion, like soil production, is controlled by the nature of the soil, the local climate, the topography, and the nature and condition of the vegetation. In particular, rates of soil erosion are also strongly influenced by the slope of the land and by agricultural practices. Generally, steeper slopes, greater rainfall, and sparser vegetation lead to more erosion.
Plants and the litter they produce protect the ground from the direct impact of raindrops as well as the erosive action of flowing water. When bare soil is exposed to rain, the blast from each incoming raindrop sends dirt downslope. Intense rainfall that triggers rapid topsoil erosion exposes deeper, denser soil that absorbs water less quickly and therefore produces more runoff. This, in turn, increases the erosive power of the water flowing over the ground surface. Some soils are incredibly sensitive to this positive feedback that can rapidly strip topsoil from bare exposed ground.
Below the surface, extensive networks of roots link plants and stabilize the topography. In a closed canopy forest, roots from individual trees intertwine in a living fabric that helps bind soil onto slopes. Conversely, steep slopes tend to erode rapidly when stripped of forest cover.
Soil scientists use a simple system to describe different soil layers—literally an ABC of dirt. The partially decomposed organic matter found at the ground surface is called the O horizon. This organic layer, whose thickness varies with vegetation and climate, typically consists of leaves, twigs, and other plant material on top of the mineral soil. The organic horizon may be missing altogether in arid regions with sparse vegetation, whereas in thick tropical jungles the O horizon holds most soil nutrients.
Below the organic horizon lies the A horizon, the nutrient-rich zone of decomposed organic matter mixed with mineral soil. Dark, organic-rich A horizons at or near the ground surface are what we normally think of as dirt. Topsoil formed by the loose O and A horizons erodes easily if exposed to rainfall, runoff, or high winds.
The next horizon down, the B horizon, is generally thicker than the top-soil, but less fertile due to lower organic content. Often referred to as subsoil, the B horizon gradually accumulates clays and cations carried down into the