Модельное мышление. Как анализировать сложные явления с помощью математических моделей. Скотт Пейдж
Чтение книги онлайн.
Читать онлайн книгу Модельное мышление. Как анализировать сложные явления с помощью математических моделей - Скотт Пейдж страница 20
Урок должен быть очевиден: формирование множества разноплановых, точных моделей позволяет нам составлять очень точные прогнозы и оценки и выбирать правильные действия. Теоремы обосновывают логику многомодельного мышления. Чего они не делают и не могут сделать, так это построить множество моделей, удовлетворяющих их исходным предположениям. На практике мы можем обнаружить, что имеем возможность создать три-пять хороших моделей. И если так, то это здорово! Нам нужно только вернуться к предыдущему абзацу: включение второй модели обеспечивает улучшение на 8 процентов, а третьей – уже на 15 процентов. Учтите, что вторая и третья модели не обязательно должны быть лучше первой. Они могут быть хуже. Однако если эти модели чуть менее точны, но отличаются в категорийном смысле, их следует включить в совокупность.
Одна большая модель и вопрос о степени детализации
Многие модели работают в теории и на практике. Но это не значит, что многомодельный подход всегда верен. Иногда лучше разработать одну большую модель. В этом разделе мы проанализируем, когда целесообразнее использовать каждый из подходов и попутно рассмотрим вопрос о степени детализации, то есть о том, насколько детальным должно быть разделение данных.
Для того чтобы ответить на первый вопрос (использовать одну большую модель или множество маленьких), вспомните об областях применения моделей: рассуждение, объяснение, разработка, коммуникация, действие, прогнозирование и исследование. Четыре из них (рассуждение, объяснение, коммуникация и исследование) требуют упрощения, благодаря чему мы можем использовать логику, позволяющую объяснять те или иные явления, распространять свои идеи и исследовать возможности.
Вспомните теорему Кондорсе о жюри присяжных. С ее помощью мы смогли раскрыть логику, объяснить, почему подход с использованием множества моделей с большой вероятностью обеспечит правильный результат, и сделать выводы. Если бы мы включили в модель жюри присяжных типы личности и представили доказательства в виде одномерного массива слов, мы заблудились бы в лесу деталей. Борхес рассуждает об этом в своем эссе о науке, рассказывая о составителях карт, стремившихся к чрезмерной детализации: «Коллегия картографов создала карту империи, которая была размером с империю и совпадала с ней до единой точки. Потомки, не столь преданные
45
См. три мои книги, опубликованные ранее: «Различие» (The Difference – Page, 2008), «Разнообразие и сложность» (Diversity and Complexity – Page, 2010) и «Преимущества разнообразия» (The Diversity Bonus – Page, 2017) – в них подробно анализируется теорема о прогнозе разнообразия. Данные об экономических прогнозах можно найти здесь: Mannes, Soil, and Larrick, 2014.