Грохочение угля. Данил Александрович Полулях
Чтение книги онлайн.
Читать онлайн книгу Грохочение угля - Данил Александрович Полулях страница 21
Рис. 2.5. Общий вид валкового грохота с эксцентричными дисками
На рис. 2.5 изображен общий вид валкового грохота с эксцентричными дисками. Грохот состоит из рамы 1, короба 2, семи валков 3, вращающихся в подшипниках качения 4, и привода. На валках эксцентрично насажены круглые диски 5. Электродвигатель 6 через упругую муфту, редуктор 7 и цепную передачу 8 приводит во вращение средний валок, от которого через короткие цепные передачи 9, расположенные по одну сторону короба, приводятся во вращение остальные валки.
Перемещение угля вдоль грохота осуществляется эксцентрично расположенными дисками, которые насажены на валках со смещением в 90о . Этим достигается энергичное разрыхление угля на грохоте и повышается эффективность грохочения. Цепная звездочка приводного вала имеет предохранительное устройство в виде шпильки, которая срезается при перегрузке грохота (например, при заклинивании валков).
Двойные звездочки иногда располагаются по обе стороны валков через один, что позволяет получить более равномерную нагрузку на короб и детали грохота.
В зависимости от размера отверстий (50-150 мм) и ширины просеивающей поверхности (1270–1500 мм) производительность грохотов колеблется от 200- до 600 т/ч.
Валковые грохоты отличаются спокойной и надежной работой, обладают большой производительностью и хорошей эффективностью грохочения. Вместе с тем при переработке углей повышенной влажности из-за налипания на валки и диски угольной мелочи эффективность работы грохотов снижается.
Недостатки валковых грохотов: большая масса, сложности конструкций, большой расход электроэнергии, сложность технического обслуживания.
2.5. Грохоты шнековые
Рабочая решетка шнековых грохотов типа ГШ состоит из системы валов-шнеков, размещенных параллельно один другому, и продольной оси грохота (рис. 2.6). Валы цилиндрической формы снабжены ребрами, расположенными по винтовой линии с постоянным шагом. При установке соседних валов по схеме «ребро против ребра» (рис. 2.7, а) образуется множество ячеек шестиугольной формы, которые при вращении валов-шнеков перемещаются к разгрузочному концу грохота, создавая «бегущую просеивающую решетку» с ячейками постоянных размеров. Образование ячеек предусмотрено для грохотов ГШ-500 и ГШ-1000. Для выделения из потока материала мелкой фракции 0–6 мм соседние валы-шнеки в грохоте ГШ-240 устанавливают по схеме «ребро входит во впадину между ребрами соседних валов-шнеков», в результате чего образуется щель грохочения (рис. 2.7, б).
Высокая производительность шнековых грохотов обеспечивается за счет принудительного перемещения исходного материала ребрами быстро вращающихся валов-шнеков по поверхности просеивающей решетки. При этом габариты ГШ невелики.
Рис. 2.6. Трехсекционный шнековый грохот ГШ1000
Грохоты отлично