Ice Adhesion. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Ice Adhesion - Группа авторов страница 39
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 801229. Youmin Hou acknowledges the funding support by the Alexander von Humboldt Foundation.
References
1 1. M. Volmer and A. Weber, Nucleus formation in supersaturated systems. Z. Phys. Chem. (Leipzig) 119, 277-301 (1926).
2 2. M. Volmer, Kinetik der Phasenbildung. first edition. Steinkopf, Dresden (1939).
3 3. L. Farkas, Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Z. Phys. Chem. (Muenchen, Ger.) 125, 236-242 (1927).
4 4. R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Annalen der Physik 416, 719-752 (1935).
5 5. Y.B. Zeldovich, On the theory of new phase formation: cavitation. Acta Physicochim. USSR 18, 1-22 (1943).
6 6. D. Turnbull and J.C. Fisher, Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71-73 (1949).
7 7. H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation. Springer Science & Business Media, Heidelberg (1998).
8 8. P. Rein ten Wolde and D. Frenkel, Homogeneous nucleation and the Ostwald step rule. Phys. Chem. Chem. Phys. 1, 2191-2196 (1999).
9 9. A. Tabazadeh, Y.S. Djikaev, and H. Reiss, Surface crystallization of supercooled water in clouds. Proc. Natl. Acad. Sci. USA. 99, 15873-15878 (2002).
10 10. A. Tabazadeh, Y.S. Djikaev, P. Hamill, and H. Reiss, Laboratory evidence for surface nucleation of solid polar stratospheric cloud particles. J. Phys. Chem. A 106, 10238-10246 (2002).
11 11. J.E. Kay, V. Tsemekhman, B. Larson, M. Baker, and B. Swanson, Comment on evidence for surface-initiated homogeneous nucleation. Atmos. Chem. Phys. 3, 1439-1443 (2003).
12 12. N.H. Fletcher, The Physics of Rainclouds. first edition. Cambridge University Press, Cambridge, UK (2011).
13 13. J. Feng, Y. Pang, Z. Qin, R. Ma, and S. Yao, Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others. ACS Appl. Mater. Interfaces 4, 6618-6625 (2012).
14 14. H. Jo, K.W. Hwang, D. Kim, M. Kiyofumi, H.S. Park, M.H. Kim, and H.S. Ahn, Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation. Sci. Rep. 5, 9901 (2015).
15 15. C. Dorrer and J. Rühe, Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Adv. Mater. 20, 159-163 (2008).
16 16. C. Dorrer and J. Rühe, Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820-3824 (2007).
17 17. R. Narhe and D. Beysens, Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23, 6486-6489 (2007).
18 18. K. Rykaczewski, A.T. Paxson, S. Anand, X. Chen, Z. Wang, and K.K. Varanasi, Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881-891 (2012).
19 19. R. Enright, N. Miljkovic, N. Dou, Y. Nam, and E.N. Wang, Condensation on superhydrophobic copper oxide nanostructures. J. Heat Transfer 10, 091304 (2012).
20 20. N. Miljkovic, D.J. Preston, R. Enright, and E.N. Wang, Electrostatic charging of jumping droplets. Nat. Commun. 4, 2517, (2013).
21 21. X. Yan, L. Zhang, S. Sett, L. Feng, C. Zhao, Z. Huang, H. Vahabi, A.K. Kota, F. Chen, and N. Miljkovic, Droplet jumping: effects of droplet size, surface structure, pinning, and liquid properties. ACS Nano 13, 1309-1323 (2019).
22 22. R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell, and E.N. Wang, How coalescing droplets jump. ACS Nano 8, 10352-10362 (2014).
23 23. S. Kim and K.J. Kim, Dropwise condensation modeling suitable for superhydrophobic surfaces. J. Heat Transfer 133, 081502 (2011).
24 24. S. Chavan, H. Cha, D. Orejon, K. Nawaz, N. Singla, Y.F. Yeung, D. Park, D.H. Kang, Y. Chang, Y. Takata, and N. Miljkovic, Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces. Langmuir 32, 7774-7787 (2016).
25 25. S. Jung, M.K. Tiwari, N.V. Doan, and D. Poulikakos, Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012).
26 26. S. Jung, M.K. Tiwari, and D. Poulikakos, Frost halos from supercooled water droplets. Proc. Natl. Acad. Sci. U. S. A. 109, 16073-16078 (2012).
27 27. B. Zobrist, T. Koop, B.P. Luo, C. Marcolli, and T. Peter, Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem. C 111, 2149-2155 (2007).
28 28. S. Nath and J.B. Boreyko, On localized vapor pressure gradients governing condensation and frost phenomena. Langmuir 32, 8350-8365 (2016).
29 29. J. Guadarrama-Cetina, A. Mongruel, W. González-Viñas, and D. Beysens, Percolation-induced frost formation. Europhys. Lett. 101, 16009 (2013).
30 30. V. Bahadur, L. Mishchenko, B. Hatton, J.A. Taylor, J. Aizenberg, and T. Krupenkin, Predictive model for ice formation on superhydrophobic surfaces. Langmuir 27, 14143-14150 (2011).
31 31. A. Alizadeh, M. Yamada, R. Li, W. Shang, S. Otta, S. Zhong, L. Ge, A. Dhinojwala, K.R. Conway, and V. Bahadur, Dynamics of ice nucleation on water repellent surfaces. Langmuir 28, 3180-3186 (2012).
32 32. M.A. Carignano, P.B. Shepson, and I. Szleifer, Molecular dynamics simulations of ice growth from supercooled water. Mol. Phys. 103, 2957-2967 (2005).
33 33. R. Enright, N. Miljkovic, A. Al-Obeidi, C.V. Thompson, and E.N. Wang, Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale. Langmuir 28, 14424-14432 (2012).
34 34. J. Chen, J. Liu, M. He, K. Li, D. Cui, Q. Zhang, X. Zeng, Y. Zhang, J. Wang, and Y. Song, Superhydrophobic surfaces cannot reduce ice adhesion. Appl. Phys. Lett. 101, 111603 (2012).
35 35. X. Tian, T. Verho, and R.H.A. Ras, Moving superhydrophobic surfaces toward real-world applications. Science 352, 142-143 (2016).
36 36. J.D. Atkinson, B.J. Murray, M.T. Woodhouse, T.F. Whale, K.J. Baustian, K.S. Carslaw, S. Dobbie, D. O’Sullivan, and T.L. Malkin, The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498, 355-358 (2013).
37 37. J.C. Bird, R. Dhiman, H.-M. Kwon, and K.K. Varanasi, Reducing the contact time of a bouncing drop. Nature 503, 385-388 (2013).
38 38. Y. Liu, L. Moevius, X. Xu, T. Qian, J.M. Yeomans, and Z. Wang, Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 10, 515-519 (2014).
39 39. X. Deng, L. Mammen, H.-J. Butt, and D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67-70 (2012).
40 40. H. Teisala, F. Geyer, J. Haapanen, P. Juuti, J.M. Mäkelä, D. Vollmer, and H.-J. Butt, Ultrafast processing of hierarchical nanotexture for a transparent superamphiphobic coating with extremely low roll-off angle and high impalement pressure. Adv. Mater. 30, 1706529 (2018).
41 41. Y. Lu, S. Sathasivam, J. Song, C.R. Crick, C.J. Carmalt, and I.P. Parkin, Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347, 1132-1135