Ice Adhesion. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Ice Adhesion - Группа авторов страница 40

Ice Adhesion - Группа авторов

Скачать книгу

W.S.Y. Wong, Surface chemistry enhancements for the tunable super-liquid repellency of low-surface-tension liquids. Nano Lett. 19, 1892-1901 (2019).

      43 43. N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E.N. Wang, Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179-187 (2012).

      44 44. J. Cheng, A. Vandadi, and C.-L. Chen, Condensation heat transfer on two-tier superhydrophobic surfaces. Appl. Phys. Lett. 101, 131909 (2012).

      45 45. J.B. Boreyko and C.-H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).

      46 46. L. Mishchenko, B. Hatton, V. Bahadur, J.A. Taylor, T. Krupenkin, and J. Aizenberg, Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699-7707 (2010).

      47 47. P. Eberle, M.K. Tiwari, T. Maitra, and D. Poulikakos, Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale 6, 4874-4881 (2014).

      48 48. S. Wang, Z. Yang, G. Gong, J. Wang, J. Wu, S. Yang, and L. Jiang, Icephobicity of penguins Spheniscus Humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures. J. Phys. Chem. C 120, 15923-15929 (2016).

      49 49. H. Sojoudi, M. Wang, N.D. Boscher, G.H. McKinley, and K.K. Gleason, Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter 12, 1938-1963 (2016).

      50 50. T.M. Schutzius, S. Jung, T. Maitra, P. Eberle, C. Antonini, C. Stamatopoulos, and D. Poulikakos, Physics of icing and rational design of surfaces with extraordinary icephobicity. Langmuir 31, 4807-4821 (2015).

      51 51. M. Nosonovsky and V. Hejazi, Why superhydrophobic surfaces are not always icephobic. ACS Nano 6, 8488-8491 (2012).

      52 52. P. Guo, Y. Zheng, M. Wen, C. Song, Y. Lin, and L. Jiang, Icephobic/anti-icing properties of micro/nanostructured Surfaces. Adv. Mater. 24, 2642-2648 (2012).

      53 53. P.W. Wilson, W. Lu, H. Xu, P. Kim, M.J. Kreder, J. Alvarenga, and J. Aizenberg, Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 15, 581-585 (2013).

      54 54. M.J. Kreder, J. Alvarenga, P. Kim, and J. Aizenberg, Design of anti-icing surfaces: smooth, textured or slippery? Nat. Rev. Mater. 1, 15003 (2016).

      55 55. E. Mitridis, T.M. Schutzius, A. Sicher, C.U. Hail, H. Eghlidi, and D. Poulikakos, Metasurfaces leveraging solar energy for icephobicity. ACS Nano 12, 7009-7017 (2018).

      56 56. T. Loho, J. Leveneur, and J. Kennedy, Effects of surface topography and chemistry modifications of stainless steel through ion implantation on icephobicity. Procedia Manufacturing 30, 231-238 (2019).

      57 57. S. Gao, W. Liu, and Z. Liu, Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation. Nanoscale 11, 459-466 (2019).

      58 58. P.C. Mahata and D.J. Alofs, Insoluble condensation nuclei: The effect of contact angle, surface roughness and adsorption. J. Atmos. Sci. 32, 116-122 (1975).

      59 59. W. Xu, Z. Lan, B. Peng, R. Wen, and X. Ma, Heterogeneous nucleation capability of conical microstructures for water droplets. RSC Adv. 5, 812-818 (2015).

      60 60. M. Nosonovsky and B. Bhushan, Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633-2637 (2007).

      61 61. N. Miljkovic, R. Enright, and E.N. Wang, Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 1776-1785 (2012).

      62 62. K.K. Varanasi, M. Hsu, N. Bhate, W.S. Yang, and T. Deng, Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 094101 (2009).

      63 63. C.-W. Yao, J.L. Alvarado, C.P. Marsh, B.G. Jones, and M.K. Collins, Wetting behavior on hybrid surfaces with hydrophobic and hydrophilic properties. Appl. Surf. Sci. 290, 59-65 (2014).

      64 64. Y. Hou, M. Yu, X. Chen, Z. Wang, and S. Yao, Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano 9, 71-81 (2014).

      65 65. Y. Hou, M. Yu, X. Chen, Z. Wang, and S. Yao, Filmwise-to-dropwise condensation transition enabled by patterned high wetting contrast. J. Heat Transfer 137, 080907 (2015).

      66 66. Y. Hou, Z. Wang, and S. Yao, Biomimetic surfaces for enhanced dropwise condensation heat transfer: mimic nature and transcend nature in: Bio-Inspired Surfaces and Applications, E.Y.K. Ng, (Ed.), pp. 185-228, World Scientific Publishing, Singapore (2016).

      67 67. Y. Hou, M. Yu, Y. Shang, P. Zhou, R. Song, X. Xu, X. Chen, Z. Wang, and S. Yao, Suppressing ice nucleation of supercooled condensate with biphilic topography. Phys. Rev. Lett. 120, 075902 (2018).

      68 68. Y. Hou, Y. Shang, M. Yu, C. Feng, H. Yu, and S. Yao, Tunable water harvesting surfaces consisting of biphilic nanoscale topography. ACS Nano 12, 11022-11030 (2018).

      69 69. L. Mishchenko, M. Khan, J. Aizenberg, and B.D. Hatton, Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches. Adv. Funct. Mater. 23, 4577-4584 (2013).

      70 70. E. Ölçeroğlu and M. McCarthy, Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces. ACS Appl. Mater. Interfaces 8, 5729-5736 (2016).

      71 71. S. Choo, H.-J. Choi, and H. Lee, Water-collecting behavior of nanostructured surfaces with special wettability. Appl. Surf. Sci. 324, 563-568 (2015).

      72 72. D. Ehre, E. Lavert, M. Lahav, and I. Lubomirsky, Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science 327, 672-675 (2010).

      73 73. P.M. Winkler, G. Steiner, A. Vrtala, H. Vehkamäki, M. Noppel, K.E.J. Lehtinen, G.P. Reischl, P.E. Wagner, and M. Kulmala, Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319, 1374-1377 (2008).

      74 74. H. Qiu and W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110, 195701 (2013).

      75 75. J.Y. Yan and G.N. Patey, Heterogeneous ice nucleation induced by electric fields. J. Phys. Chem. Lett. 2, 2555-2559 (2011).

      76 76. Z. He, W.J. Xie, Z. Liu, G. Liu, Z. Wang, Y.Q. Gao, and J. Wang, Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Sci. Adv. 2, e1600345 (2016).

      77 77. H. Yang, C. Ma, K. Li, K. Liu, M. Loznik, R. Teeuwen, J.C.M. van Hest, X. Zhou, A. Herrmann, and J. Wang, Tuning ice nucleation with supercharged polypeptides. Adv. Mater. 28, 5008-5012 (2016).

      78 78. R. Peltier, M.A. Brimble, J.M. Wojnar, D.E. Williams, C.W. Evans, and A.L. DeVries, Synthesis and antifreeze activity of fish antifreeze glycoproteins and their analogues. Chem. Sci. 1, 538-551 (2010).

      79 79. C.B. Marshall, G.L. Fletcher, and P.L. Davies, Hyperactive antifreeze protein in a fish. Nature 429, 153 (2004).

      80 80. M. Bar Dolev, I. Braslavsky, and P.L. Davies, Ice-binding proteins and their function. Annu. Rev. Biochem. 85, 515-542 (2016).

      81 81. C.I. Biggs, C. Stubbs, B. Graham, A.E.R. Fayter, M. Hasan, and M.I. Gibson, Mimicking the ice recrystallization activity of biological antifreezes. When is a new polymer “active”? Macromol. Biosci. 19, 1900082 (2019).

      82 82. A. Kiselev, F. Bachmann, P. Pedevilla, S.J. Cox, A. Michaelides,

Скачать книгу