Medical Statistics. David Machin

Чтение книги онлайн.

Читать онлайн книгу Medical Statistics - David Machin страница 32

Medical Statistics - David  Machin

Скачать книгу

that whether or not one individual survives or dies does not affect the chance of another individual's survival.

      For example, the proportion of male births out of total births in England and Wales in 2016 was 357 046/696 271 = 0.51. Since all births in England and Wales must be registered within 42 days of the child being born and this a large sample, we can use this an estimate of the probability that a baby born in England and Wales will be male.

      Similarly, when it is stated that patients with a certain disease have a 50% chance of surviving five years, this is based on past experience of other patients with the same disease. In some cases a ‘trial’ may be generated by randomly selecting an individual from the general population, as discussed in Chapters 5 and 14, and examining him or her for the particular attribute in question. For example, suppose the prevalence of diabetes in the population is 1%. The prevalence of a disease is the number of people in a population with the disease at a certain time divided by the number of people in the population (see Chapter 14 for further details). If a trial was then conducted by randomly selecting one person from the population and testing him or her for diabetes, the individual would be expected to be diabetic with probability 0.01. If this type of sampling of individuals from the population were repeated, then the proportion of diabetics in the total sample taken would be expected to be approximately 1%.

      However, in some situations we can determine probabilities without repeated sampling. For example, we know that the possibility of a ‘6’ when throwing a six‐sided die is 1/6, because there are six possibilities, all equally likely. Nevertheless, we may wish to conduct a series of trials to verify this fact.

      Another type of probability is ‘subjective’ probability. When a patient presents with chest pains, a clinician may, after a preliminary examination, say that the probability that the patient has heart disease is about 20%. However, although the clinician does not know this yet, the individual patient either has or has not got heart disease. Thus, at this early stage of investigation the probability is a measure of the strength or degree of the belief of the clinician in the two alternative hypotheses, that the patient has got heart disease or has not got heart disease. The next step is then to proceed to further examinations of the patient in order to modify the strength of this initial subjective belief so that the clinician becomes more certain of which is the true situation – the patient has heart disease or the patient does not. We commonly come across subjective probability in the gaming industry. The odds of a horse winning a race, for example, are a measure of how likely a bookmaker thinks it will win. It is based not just on how often the horse has won before, but also on other factors such as the jockey and the course conditions.

      The three types of probability all have the following basic properties.

      1 All probabilities lie between 0 and 1.

      2 If two outcomes or events are mutually exclusive so that they both cannot occur at the same time, the probability of either happening is the sum of the two individual probabilities (this is known as the ‘addition rule’).

      3 If two outcomes are independent (i.e. knowing the outcome of one experiment tells us nothing about the other experiment), then the probability of both occurring is the product of the individual probabilities (this is known as the ‘multiplication rule’).

      When the outcome can never happen the probability is 0. When the outcome will definitely happen the probability is 1. If two events are mutually exclusive then only one can happen. For example, the outcome of a trial might be death (probability 5%) and severe disability (probability 20%). Thus, by the addition rule the probability of either death or severe disability is 25%.

      If two events are independent then the fact that one has happened does not affect the chance of the other event happening. For example, the probability that a pregnant woman gives birth to a boy (event A) and the probability of white Christmas (event B). These two events are unconnected since the probability of giving birth to a boy is not related to the weather at Christmas.

      Examples of Addition and Multiplication Rules – Using Dice Rolling

      If we throw a six‐sided die the probability of throwing a 6 is 1/6 and the probability of a 5 is also 1/6. We cannot throw a 5 and 6 at the same time (these events are mutually exclusive) using 1 die so the probability of throwing either 5 or a 6 is (by the addition rule):

equation

      Suppose we throw two six‐sided dice together. The probability of throwing a 6 is 1/6 for each die. The outcome of each die is independent of the other. Therefore, the probability of throwing two 6s together (by the multiplication rule) is:

equation

      Probability Distributions for Discrete Outcomes

      If we toss a two‐sided coin it comes down either heads or tails. In a single toss of the coin you are uncertain whether you will get a head or a tail. However, if we carry on tossing our coin, we should get several heads and several tails. If we go on doing this for long enough, then we would expect to get as many heads as we do tails. So, the probability of a head being thrown is a half, because in the long run a head should occur on half the throws. The number of heads which might arise in several tosses of the coin is called a random variable, that is a variable which can take more than one value, each with a given probability attached to them.

Скачать книгу