Security Engineering. Ross Anderson
Чтение книги онлайн.
Читать онлайн книгу Security Engineering - Ross Anderson страница 83
Figure 5.12: The Feistel cipher structure
In other words, to decrypt, we just use the round functions in the reverse order. Thus the round functions
5.4.3.1 The Luby-Rackoff result
The key theoretical result on Feistel ciphers was proved by Mike Luby and Charlie Rackoff in 1988. They showed that if
In engineering terms, the effect is that given a really good round function, four rounds of Feistel are enough. So if we have a hash function in which we have confidence, it is straightforward to construct a block cipher from it: use four rounds of keyed hash in a Feistel network.
5.4.3.2 DES
The DES algorithm is widely used in banking and other payment applications. The ‘killer app’ that got it widely deployed was ATM networks; from there it spread to prepayment meters, transport tickets and much else. In its classic form, it is a Feistel cipher, with a 64-bit block and 56-bit key. Its round function operates on 32-bit half blocks and consists of three operations:
first, the block is expanded from 32 bits to 48;
next, 48 bits of round key are mixed in using exclusive-or;
the result is passed through a row of eight S-boxes, each of which takes a six-bit input and provides a four-bit output;
finally, the bits of the output are permuted according to a fixed pattern.
The effect of the expansion, key mixing and S-boxes is shown in Figure 5.13:
Figure 5.13: The DES round function
The round keys are derived from the user-supplied key by using each user key bit in twelve different rounds according to a slightly irregular pattern. A full specification of DES is given in [1399].
DES was introduced in 1974 and immediately caused controversy. The most telling criticism was that the key is too short. Someone who wants to find a 56 bit key using brute force, that is by trying all possible keys, will have a total exhaust time of
During the 1980’s, there were persistent rumors of DES keysearch machines being built by various intelligence agencies, but the first successful public keysearch attack took place in 1997. In a distributed effort organised over the net, 14,000 PCs took more than four months to find the key to a challenge. In 1998, the Electronic Frontier Foundation (EFF) built a DES keysearch machine called Deep Crack for under $250,000, which broke a DES challenge in 3 days. It contained 1,536 chips run at 40MHz, each chip containing 24 search units which each took 16 cycles to do a test decrypt. The search rate was thus 2.5 million test decryptions per second per search unit, or 60 million keys per second per chip. The design of the cracker is public and can be found at [619]. By 2006, Sandeep Kumar and colleagues at the universities of Bochum and Kiel built a machine using 120 FPGAs and costing $10,000, which could break DES in 7 days on average [1110]. A modern botnet with 100,000 machines would take a few hours. So the key length of single DES is now inadequate.
Another criticism of DES was that, since IBM kept its design principles secret at the request of the US government, perhaps there was a ‘trapdoor’ which would give them easy access. However, the design principles were published in 1992 after differential cryptanalysis was invented and published [473]. The story was that IBM had discovered these techniques in 1972, and the US National Security Agency (NSA) even earlier. IBM kept the design details secret at the NSA's request. We'll discuss the political aspects of all this in 26.2.7.1.
We now have a fairly thorough analysis of DES. The best known shortcut attack, that is, a cryptanalytic attack involving less computation than keysearch, is a linear attack using