Biopolymers for Biomedical and Biotechnological Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biopolymers for Biomedical and Biotechnological Applications - Группа авторов страница 25

Biopolymers for Biomedical and Biotechnological Applications - Группа авторов

Скачать книгу

style="font-size:15px;">      8 8 Yu, Y., Shen, M., Song, Q., and Xi, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydrate Polymers 183: 91–101.

      9 9 Roca, C., Alves, V.D., Freitas, F., and Reis, M.A.M. (2015). Exopolysaccharides enriched in rare sugars: bacterial sources, production and applications. Frontiers in Microbiology 6: 288.

      10 10 Freitas, F., Alves, V.D., and Reis, M.A.M. (2014). Bacterial polysaccharides: production and cosmetic applications. In: Polysaccharides: Bioactivity and Biotechnology. Part III. Bioactive Polysaccharides (eds. J.‐M. Merillon and K.G. Ramawat), 1–24. Germany: Springer‐Verlag GmbH.

      11 11 Rehm, B.H.A. (2010). Bacterial polymers: biosynthesis, modifications and applications. Nature Reviews in Microbiology 8: 578–592.

      12 12 Kumar, A., Rao, K.M., and Soo, S. (2018). Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohydrate Polymers 180: 128–144.

      13 13 Patel, A. and Prajapati, J.B. (2013). Food and health applications of exopolysaccharides produced by lactic acid bacteria. Advances in Dairy Research 1: 2.

      14 14 Amado, I.R., Vásquez, J.A., Pastrana, L., and Teixeira, J.A. (2016). Cheese whey: a cost‐effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chemistry 198: 54–61.

      15 15 Prajapati, V.D., Jani, G.K., and Khanda, S.M. (2013). Pullulan: an exopolysaccharide and its various applications. Carbohydrate Polymers 95: 540–549.

      16 16 Schmid, J., Meyer, V., and Sieber, V. (2011). Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Applied Microbiology and Biotechnology 91: 937–947.

      17 17 Srikanth, R., Siddartha, G., Reddy, C.H.S.S.S. et al. (2015). Antioxidant and anti‐inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydrate Polymers 123: 8–16.

      18 18 Gugliandolo, C., Spanò, A., Lentini, V. et al. (2013). Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. Journal of Applied Microbiology 116: 1028–1034.

      19 19 Luang‐In, V., Saengha, W., and Deeseenthum, S. (2018). Characterization and bioactivities of a novel exopolysaccharide produced from lactose by Bacillus tequilensis PS21 isolated from Thai milk kefir. Microbiology and Biotechnology Letters 46 (1): 9–17.

      20 20 Lourenço, S.C., Torres, C.A.V., Nunes, D. et al. (2017). Using a bacterial fucose‐rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules 104: 1099–1106.

      21 21 Huang, M., Wang, F., Zhou, X. et al. (2015). Hypoglycemic and hypolipidemic properties of polysaccharides from Enterobacter cloacae Z0206 in KKAy mice. Carbohydrate Polymers 117: 91–98.

      22 22 Bhat, B. and Bajaj, B.K. (2018). Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei. Bioresource Technology 254: 264–267.

      23 23 Trabelsi, I., Ktari, N., Slima, S.B. et al. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp.Ca6. International Journal of Biological Macromolecules 103: 194–201.

      24 24 Di, W., Zhang, L., Wang, S. et al. (2017). Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk. Carbohydrate Polymers 171: 307–315.

      25 25 Rani, R.P., Anandharaj, M., and Ravindran, A.D. (2018). Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. International Journal of Biological Macromolecules 109: 772–783.

      26 26 Jeong, D., Kim, D.H., Kang, I.B. et al. (2017). Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir. Food Control 78: 436–442.

      27 27 Sasikumar, K., Vaikkath, D.K., Devendra, L., and Nampoothiri, K.M. (2017). An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresource Technology 241: 1152–1156.

      28 28 Pérez‐Ramos, A., Mohedano, M.L., Pardo, M.Á., and López, P. (2018). β‐Glucan producing Pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in zebrafish models. Frontiers in Microbiology 9: 1684.

      29 29 Chen, G., Qiana, W., Li, J. et al. (2015). Exopolysaccharide of Antarctic bacterium Pseudoalteromonas sp. S‐5 induces apoptosis in K562 cells. Carbohydrate Polymers 121: 107–114.

      30 30 Cheng, J.J., Chang, C.C., Chao, C.H., and Lu, M.K. (2012). Characterization of fungal sulfated polysaccharides and their synergistic anticancer effects with doxorubicin. Carbohydrate Polymers 90: 134–139.

      31 31 Chen, Y., Mao, W., Tao, H. et al. (2011). Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresource Technology 102: 8179–8184.

      32 32 Bauerová, K., Mihalová, D., Drábiková, K. et al. (2012). Effects of glucomannan isolated from Candida utilis on adjuvant arthritis in Lewis rats. Current Topics in Nutraceutical Research 10 (1): 13–30.

      33 33 Orlandelli, R.C., da Silva, M.L.C., Vasconcelos, A.F.D. et al. (2017). β‐(1→3,1→6)‐d‐Glucans produced by Diaporthe sp. endophytes: purification, chemical characterization and antiproliferative activity against MCF‐7 and HepG2‐C3A cells. International Journal of Biological Macromolecules 94: 431–437.

      34 34 Prathyusha, A.M.V.N., Sheela, G.M., and Bramhachari, P.V. (2018). Chemical characterization and antioxidant properties of exopolysaccharides from mangrove filamentous fungi Fusarium equiseti ANP2. Biotechnology Reports 19: e00277.

      35 35 Mahapatra, S. and Banerjee, D. (2012). Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohydrate Polymers 90: 683–689.

      36 36 Lu, Y., Xu, L., Cong, Y. et al. (2019). Structural characteristics and anticancer/antioxidant activities of a novel polysaccharide from Trichoderma kanganensis. Carbohydrate Polymers 205: 63–71.

      37 37 Arad, S.M., Rapoport, L., Moshkovich, A. et al. (2006). Superior biolubricant from a species of red microalga. Langmuir 22 (17): 7313–7317.

      38 38 Dvir, I., Stark, A.H., Chayoth, R. et al. (2009). Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1 (2): 156–167.

      39 39 Matsui, S.M., Muizzudin, N., Arad, S.M., and Marenus, K. (2003). Sulfated polysaccharides from red microalgae anti‐inflammatory properties in vitro and in vivo. Applied Biochemistry and Biotechnology 104: 13–22.

      40 40 Soanen, N., Da Silva, E., Gardarin, C. et al. (2016). Improvement of exopolysaccharide production by Porphyridium marinum. Bioresource Technology 213: 231–238.

      41 41 Sun, L., Wang, C., Shi, Q., and Ma, C. (2009). Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. International Journal of Biological Macromolecules 45 (1): 42–47.

      42 42 Radonic, A., Thulke, S., Achenbach, J. et al. (2010). Anionic polysaccharides from phototrophic microorganisms exhibit antiviral activities to vaccinia virus. Journal of Antivirals and Antiretrovirals 2 (4): 51–55.

      43 43

Скачать книгу