Neurobiology For Dummies. Frank Amthor

Чтение книги онлайн.

Читать онлайн книгу Neurobiology For Dummies - Frank Amthor страница 18

Neurobiology For Dummies - Frank  Amthor

Скачать книгу

of amino acids to be wrong.

      Transcription mechanisms

      Transcription occurs in the cell nucleus. The transcription process “reads” the DNA code to create a matching messenger RNA molecular template that will exit the nucleus and be used to synthesize proteins. The RNA strand is complementary to the DNA strand, just like the two single DNA strands are complementary to each other in the double helix, except that in RNA the nucleotide uracil takes the place that thymine occupies in DNA.

       Initiation: In this first part of transcription, DNA is partially “unzipped” by the enzyme helicase, allowing access to the DNA nucleotide sequence for copying. Transcription factors bind the promoter region of the gene, which is a control region immediately preceding the beginning of the gene. Polymerase, the molecule that copies DNA into RNA, binds to a complex of transcription factors at the promoter.

       Elongation: RNA polymerase unwinds the DNA double helix, moves down it, and elongates the RNA transcript by adding ribonucleotides in a 5' to 3' direction (refer to the earlier section, “DNA replication”). The RNA polymerase “reads” the DNA strand sequentially and produces a single strand of messenger RNA (complementary to the DNA sequence that is its template).

       Termination: When the RNA polymerase reaches the end of the gene, the mRNA and polymerase detach from the DNA. The single strand of newly synthesized mRNA leaves the nucleus through nuclear pores and migrates into the cytoplasm.

      Protein synthesis

      The mRNA sequence is not usually directly translated into the amino acid sequence forming a protein. In eukaryotic cells, the mRNA (called primary transcript) undergoes post-transcriptional modification to yield what’s called heterophilic nuclear RNA (hnRNA). Spliceosomes (a combination of nucleoproteins and RNA molecules that help to splice) then remove the introns (noncoding parts of the gene) from the hnRNA. This produces the final mRNA — composed of the coding exons. (See the section “Introns versus exons,” later in this chapter.)

      

Ribosomes translate the modified messenger RNA and convert its RNA sequence using transfer RNA (tRNA) on ribosomes. Each transfer RNA is a small RNA molecule that is loosely linked to a single amino acid for which it codes. The ribosome binds to the end of an mRNA molecule and then moves along it. As it moves, it sequentially binds to an appropriate tRNA molecule by base-pairing complementary regions of the tRNA with the codon located on the mRNA. The attached amino acid is added to the forming protein, and the tRNA — no longer carrying amino acids — is released. The process then continues to the next mRNA codon.

      Within the chromosomes, chromatin proteins such as histones compact and organize DNA. These compact structures guide the interactions between DNA and other proteins, helping control which parts of the DNA are transcribed.

      Cells can modify the rate at which specific gene products (protein or RNA) are produced. This occurs as cells proceed down their developmental pathways, but it also occurs in response to environmental stimuli. Gene expression can be modified at all the stages of transcription, RNA processing, and post-translational protein modification.

      One of the main mechanisms of regulating DNA expression is methylation by methyltransferase enzymes (adding methyl groups to adenine or cytosine nucleotides in the DNA), which occurs on cytosine nucleotides. Another important regulation mechanism is histone acetylation, when histone acetyltransferase enzymes (HATs) dissociate the histone complex from a section of DNA. The presence of histones blocks expression, so by removing histones, transcription can proceed. Methylation and histone deacetylation may act simultaneously to control DNA expression.

      Introns and exons

      The discovery that many genes were interrupted by introns (intervening sequences) that were not expressed came as quite a shock to much of the scientific world. Depending on the species, introns may be the majority of the total DNA sequence of the organism. RNA splicing (refer to the earlier section “Protein synthesis”) removes introns to produce a final mRNA molecule ready for translation. The term intron refers to both the non-expressed DNA sequence and its corresponding sequence in the unspliced mRNA. After the introns are spliced out of the mRNA, the result is called an exon.

      

The origin of introns is still unclear. Introns were initially viewed as accidental DNA sequences, possibly leftovers from evolution or even parasitic “selfish” DNA. One conjecture has been that introns provide places for the DNA sequence to break during crossover in meiosis, making it less likely that a break will occur in the middle of a needed gene.

      Regardless of their origin, introns allow the protein sequences generated from a single gene to vary greatly. This is because the same DNA sequence can generate different proteins by varying how the mRNA is spliced. Environmental factors that get taken up by a cell can modify the control of alternative RNA splicing.

      Protein synthesis versus regulation

      The classic picture of DNA being transcribed to RNA, and RNA being translated into proteins, was typically thought of as a one-way process. However, this description is not complete. The products of DNA expression, as well as external substances that get taken up by a cell, can also regulate protein production.

      Post-translational processing

      When proteins are created by ribosomes that translate the mRNA into polypeptide chains, the amino acid polypeptide chains may undergo folding and/or cutting before becoming the final protein. The processes of folding and cutting often occur in the endoplasmic reticulum and may include structural changes based on the formation of disulfide bridges.

      Also after translation happens, other biochemical functional groups may be attached to the amino acid sequence of the protein, such as carbohydrates, lipids, and phosphates. Adding phosphate groups is called phosphorylation. This is a common mechanism for activating or inactivating an enzyme protein.

      Some

Скачать книгу