EXTREMOPHILES as Astrobiological Models. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу EXTREMOPHILES as Astrobiological Models - Группа авторов страница 26
2.33. Farrand, W.H., Glotch, T.D., Rice, J.W., Jr., Hurowitz, J.A., Swayze, G.A., Discovery of jarosite within Mawrth Vallis region of Mars: Implications for the geologicalhistory of the region. Icarus, 204, 478–488, 2009.
2.34. Fairen, A.G., Fernández-Remolar, D., Dohm, J.M., Baker, V.R., Amils, R., Inhibition of carbonate synthesis in acidic oceans from Mars. Nature, 431, 423–426, 2004.
2.35. Fernández-Remolar, D.C., Rodríguez, N., Gómez, F., Amils, R., Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system. J. Geophys. Res., 108, E7, 5080, 2003.
2.36. Fernández-Remolar, D.C., Gómez-Elvira, J., Gómez, F., Sebastián, E., Martín, J., Manfredi, J.A., Torres, J., González Kesler, C., Amils, R., The Tinto River, an extreme acidic environment as an analogue of the Terra Meridiani hematite site of Mars. Planet. Space Sci., 52, 239–248, 2004.
2.37. Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R., Knoll, A.H., The Rio Tinto Basin, Spain: Mineralogy, sedimentary geobiology and implications for interpretation of outcrop rocks of Meridiani Planum, Mars. Earth Planet. Sci. Lett., 240, 149–167, 2005.
2.38. Fernández-Remolar, D., Gómez, F., Prieto-Ballesteros, O., Schelble, R.T., Rodríguez, N., Amils, R., Some ecological mechanisms to generate habitability in planetary subsurfaces areas by chemolithotrophic communities: The Río Tinto subsurface ecosystem as a model system. Astrobiology, 8, 157–173, 2008.
2.39. Fernández-Remolar, D.C. and Knoll, A.H., Fossilization potential of iron-bearing minerals in acidic environments of Rio Tinto, Spain: Implications for Mars exploration. Icarus, 194, 72–85, 2008.
2.40. Fernández-Remolar, D., Prieto-Ballesteros, O., Rodríguez, N., Gómez, F., Amils, R., Gomez-Elvira, J., Stoker, C., Underground habitats found in the Río Tinto Basin: A model for sub-surface life habitats on Mars. Astrobiology, 8, 1023–1046, 2008.
2.41. Fernández-Remolar, D., Prieto-Ballesteros, O., Gómez-Ortiz, D., Fernández-Sampedro, M., Sarrazin, P., Gailhanou, M., Amils, R., Río Tinto sedimentary mineral assemblages: A terrestrial perspective that suggests some formation pathway of phyllosilicates on Mar. Icarus, 211, 114–138, 2011.
2.42. Fernández-Remolar, D.C., Preston, L.J., Sánchez-Román, M., Izawa, M.R.M., Huang, L., Southam, G., Banerjee, N.R., Osinski, G.R., Flemming, R., Gómez-Ortíz, D. et al., Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars. Earth Planet. Sci. Lett., 351, 13–26, 2012.
2.43. Fernández-Remolar, D., Banerjee, N., Gómez-Ortiz, D., Izawwa, M., Amils, R., A mineralogical archive of the biogeochemical sulfur cycle preserved in the subsurface of the Río Tinto system. Am. Mineral., 103, 394–411, 2018.
2.44. Florentino, A.P., Brienza, C., Stams, A.J.M., Sánchez-Andrea, I., Desulfurella amilsii sp.nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments. Int. J. Syst. Evol. Microbiol., 66, 1249–1253, 2016.
2.45. Florentino, A.P., Stams, A.J.M., Sánchez-Andrea, I., Genome sequence of Desulfurella amilsii strain TR1 and comparative genomics of Desulfurellaceae family. Front. Microbiol., 8, e222, 2017.
2.46. Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M., Detection of methane in the atmosphere of Mars. Science, 306, 1758–1761, 2004.
2.47. García-Moyano, A., González-Toril, E., Aguilera, A., Amils, R., Prokaryotic community composition and ecology of macroscopic floating filaments from an extreme acidic environment, Río Tinto, (SW, Spain). Syst. Appl. Microbiol., 30, 601–614, 2007.
2.48. Garcia-Moyano, A., González-Toril, E., Moreno-Paz, M., Parro, V., Amils, R., Evaluation of Leptospirillum spp. in Rio Tinto, a model of interest to biohydrometallurgy. Hydrometallurgy, 94, 155–161, 2008.
2.49. García Moyano, A., González-Toril, E., Aguilera, A., Amils, R., Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment. FEMS Microbiol. Ecol., 81, 303–314, 2012.
2.50. Garrido, P., González-Toril, E., García-Moyano, A., Moreno-Paz, M., Amils, R., Parro, V., An oligonucleotide prokaryotic microarray (PAM): Its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ. Microbiol., 10, 836–850, 2008.
2.51. Geen, A., Adkins, J.F., Boyle, E.A., Nelson, C.H., Palanques, A., A 120-year record of wide-spread contamination from mining of the Iberian Pyrite Belt. Geology, 25, 291–294, 1997.
2.52. Gold, T., The deep hot biosphere. Proc. Natl. Acad. Sci. USA, 89, 6045–6049, 1992.
2.53. Gómez, F., Fernández-Remolar, D., González-Toril, E., Amils, R., The Tinto River, an extreme Gaian environment, in: Gaia 2000, L. Margulis, J. Miller, P. Boston, S. Schneider, C. Crist (Eds.), pp. 321–333, MIT Press, Boston, USA, 2003.
2.54. Gómez, F., Aguilera, A., Amils, R., Soluble ferric iron as an efective protective agent against UV radiation: Implications for early life. Icarus, 191, 352–359, 2007.
2.55. Gómez, F., Mateo-Martí, E., Prieto.Ballesteros, O., Martín-Gago, J., Amils, R., Protection of chemolithotrophic bacteria exposed to Mars environmental conditions. Icarus, 209, 2, 482–487, 2010.
2.56. Gómez-Ortiz, D., Fernández-Remolar, D., Granda, A., Quesada, C., Granda, T., Prieto-Ballesteros, O., Molina, A., Amils, R., Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water. Spain. Earth Planet. Sci. Lett., 391, 36–41, 2014.
2.57. González-Toril, E., Llobet-Brosa, E., Casamayor, E.O., Amann, R., Amils, R., Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol., 69, 4853–4865, 2003.
2.58. González-Toril, E., Aguilera, A., Rodríguez, N., Fernández-Remolar, D., Gómez, F., Díaz, E., García-Moyano, A., Sanz, J.L., Amils, R., Microbial ecology of Río Tinto, a natural extreme acidic environment. Hydrometallurgy, 10, 329–333, 2010.
2.59. Gross, W., Ecophysiology of algae living in highly acidic environments. Hydrobiology, 433, 31–37, 2000.
2.60. Hallberg, K.B. and Johnson, D.B., Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol., 49, 37–84, 2001.
2.61. Johnson, D.B. and Hallberg, K.B., The microbiology of acidic mine waters. Res. Microbiol., 154, 466–473, 2003.
2.62. Johnson, D.B. and Hallberg, K.B., Acid mine drainage remediation options: A review. Sci. Total Environ., 338, 3–14, 2005.
2.63. Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Jr., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B. et al., Jarosite and hematite at Meridiani Planum from the Mössbauer spectrometer on the Opportunity rover. Science, 306, 1740–1745, 2005.
2.64. Klueglein, N. and Kappler, A., Abiotic oxidation of F(II) by reactive nitrogen species in cultures