EXTREMOPHILES as Astrobiological Models. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу EXTREMOPHILES as Astrobiological Models - Группа авторов страница 27

EXTREMOPHILES as Astrobiological Models - Группа авторов

Скачать книгу

enzymatic Fe(II) oxidation. Geobiology, 11, 180–190, 2013.

      2.65. Klueglein, N., Zeitvogel, F., Stierhof, Y.D., Floetenmeyer, M., Konhauser, K.O., Kappler, A., Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl. Environ. Microbiol., 80, 1051–1061, 2014.

      2.66. Kotsyurbenko, O.R., Friedrich, M.W., Simankova, M.V., Nozhenvnikova, A.N., Golyshin, P.N., Timmis, K.N., Conrad, R., Shift from acetoclastic to H2 dependent methanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl. Environ. Microbiol., 73, 2344–2348, 2007.

      2.67. Leandro, T., da Costa, M.S., Sanz, J.L., Amils, R., Complete genome of Tessaracoccus sp. strain T2.5-30 isolated from 139.5 m deep on the subsurface of the Iberian Pyrite Belt. Genome Announc. J., 5, 17, #e00238–17, 2017.

      2.68. Leblanc, M., Morales, J.A., Borrego, J., Elbaz-Poulichet, F., A 4500-year-old mining pollution in Southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol., 95, 655–662, 2000.

      2.69. Leistel, J.M., Marcoux, E., Theiblemont, D., Quesada, C., Sánchez, A., Almodóvar, G.R., Pascual, E., Saez, R., The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner. Deposita, 33, 2–30, 1998.

      2.70. Lescuyer, J.L., Leistel, J.M., Mrcoux, E., Milési, J.P., Thiéblemont, D., Late Devonian-Early Carboniferous peak sulphide mineralization in the Western Hercynides. Miner. Deposita, 33, 208–220, 1998.

      2.71. Lichtenberg, K.A., Arvidson, R.E., Morris, R.V., Murchie, S.L., Bishop, J.L., Fernandez Remolar, D., Glotch, T.D., Noe Dobrea, E., Mustard, J.F., Andrews-Hanna, J. et al., Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. J. Geophys. Res.: Planets, 115, ED00D17, 2010.

      2.72. López-Archilla, A.I., Marín, I., Amils, R., Microbial community composition and ecology of an acidic aquatic environment: The Tinto River, Spain. Microb. Ecol., 41, 20–35, 2001.

      2.73. López-Archilla, A.I., González, A.E., Terrón, M.C., Amils, R., Diversity and ecological relationships of the fungal populations of an acidic river of Southwestern Spain: The Tinto River. Can. J. Microbiol., 50, 923–934, 2005.

      2.74. Lu, S., Gischkat, S., Reiche, M., Akob, D.M., Hallberg, K.B., Küsel, K., Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl. Environ. Microbiol., 76, 8174–8183, 2010.

      2.75. Malki, M., González-Toril, E., Sanz, J.L., Gómez, F., Rodríguez, N., Amils, R., Importance of the iron cycle in biohydrometallurgy. Hydrometallurgy, 83, 223–228, 2006.

      2.76. Margulis, L., Mazur, P., Barghoorn, E.S., Halvorson, H.O., Jukes, T.H.J., Kaplan, I.R., The Viking Mission: Implications for life in the Vallis Marineris area. Science, 305, 78–81, 1979.

      2.77. Martin, J.H., Glacial-interglacial CO2 change: The iron hypothesis. Paleooceanography, 5, 1–13, 1990.

      2.78. Michalski, J.R., Dobrea, E.Z.N., Niles, P.B., Cuadros, J., Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun., 8, e15978, 2017.

      2.79. Milliken, R.E., Swayze, G.A., Arvidson, R.E., Bishop, J.L., Clark, R.N., Ehlmann, B.L., Green, R.O., Grotzinger, J.P., Morris, R.V., Murchie, S.L. et al., Opaline silica in young deposits on Mars. Geology, 36, 847–850, 2008.

      2.80. McLennan, S.M., Bell, J.F., III, Calvin, W.M., Christensen, P.R., Clark, B.C., de Souza, P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R. et al., Provenance and diagenesis of the Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett., 240, 95–121, 2005.

      2.82. Oggerin, M., Tornos, F., Rodríguez, N., del Moral, C., Sánchez-Román, M., Amils, R., Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Environ. Microbiol., 15, 2228–2237, 2013.

      2.83. Oggerin, M., Rodríguez, N., del Moral, C., Amils, R., Fungal jarosite biomineralization in Río Tinto, a process of biohydrometallurgical interest. Res. Microbiol., 165, 719–725, 2014.

      2.84. Oggerin, M., Tornos, F., Rodríguez, N., Amils, R., Fungal iron biomineralization in Río Tinto. Minerals, 6, 2, 37, 2016.

      2.85. Parro, V., Fernández-Remolar, D., Rodríguez-Manfredi, J.A., Cruz-Gil, P., Rivas, L.A., RuizBermejo, M., Moreno-Paz, M., García-Villadangos, M., Gómez-Ortiz, D., Blanco-López, Y. et al., Classification of modern and old Río Tinto sedimentary deposits through the bio-molecular record using a Life Marker Biochip: Implications for detecting Life on Mars. Astrobiology, 11, 29–44, 2011.

      2.86. Pedersen, K., Exploration of deep intraterrestrial microbial life: Current perspectives. FEMS Microbiol. Lett., 185, 9–16, 2000.

      2.87. Puente-Sánchez, F., Moreno-Paz, M., Rivas, L.A., Cruz-Gil, P., García-Villadangos, M., Gómez, M.J., Postigo, M., Garrido, P., González-Toril, E., Briones, C. et al., Deep subsurface sulfate reduction and methanogenesis in the Iberian Pyrite Belt revealed through geochemistry and molecular biomarkers. Geobiology, 12, 34–47, 2014.

      2.88. Puente-Sánchez, F., Sánchez-Román, M., Amils, R., Parro, V., Tessaracoccus lapidicaptus sp. nov., a novel actinobacterium isolated from the deep subsurface of the Iberian Pyrite Belt (Huelva, Spain). Int. J. Syst. Evol. Microbiol., 64, 3546–3552, 2014.

      2.89. Preston, L., Shuster, J., Fernández-Remolar, D., Banerjee, N., Osinski, G.R., Southam, G., The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology, 9, 233–249, 2011.

      2.90. Pronk, J.T., Bruyn, J.C., Bos, P., Kuenen, J.G., Anaerobic growth of Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 58, 2227–2230, 1992.

      2.91. Rawlings, D.E., Heavy metal mining using microbes. Annu. Rev. Microbiol., 56, 65–91, 2002.

      2.92. Rawlings, D.E., Characteristics and adptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact., 4, 13–28, 2005.

      2.93. Rieder, R., Gellert, R., Anderson, R.C., Brückner, J., Clark, B.C., Dreibus, G., Economou, T., Klingelhöfer, G., Lugmair, G.W., Ming, D.W. et al., Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science, 306, 1746–1749, 2004.

      2.94. Sánchez-Andrea, I., Rodríguez, N., Amils, R., Sanz, J.L., Microbial diversity in anaerobic sediments at Río Tinto, a naturally acidic environment with a high heavy metal content. Appl. Environ. Microbiol., 77, 17, 6085–6093, 2011.

      2.95. Sánchez-Andrea, I., Rojas-Ojeda, P., Amils, R., Sanz, J.L., Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Extremophiles, 16, 829–839, 2012.

      2.96. Sánchez-Andrea, I., Stams, A.J.M., Amils, R., Sanz, J.L., Enrichment and isolation of acido-philic sulfate-reducing bacteria from Tinto River sediments. Environ. Microbiol. Rep., 5, 5, 672–678, 2013.

      2.97.

Скачать книгу