Molecular Biotechnology. Bernard R. Glick

Чтение книги онлайн.

Читать онлайн книгу Molecular Biotechnology - Bernard R. Glick страница 60

Molecular Biotechnology - Bernard R. Glick

Скачать книгу

be inactivated, at high temperatures employed in an industrial process, or a therapeutic protein may be short lived due to protease sensitivity necessitating administration of high, somewhat toxic, doses. Random or directed mutagenesis can be employed to alter the nucleotide sequence encoding a protein to improve its stability, activity, specificity, cofactor requirements, or protease resistance. Straightforward protocols have been developed to introduce nucleotide substitutions into a gene on an oligonucleotide primer by PCR. When the specific amino acids that contribute to a property are known in advance, the defined nucleotide changes can be introduced on an oligonucleotide by overlap extension or inverse PCR. When the amino acid changes that will result in the desired property of a protein are unknown, libraries of randomly mutated sequences can be generated by performing a PCR under conditions that increase the error rate or by employing degenerate oligonucleotide primers. Most of the mutations will decrease the function of the encoded protein and therefore the libraries must be screened to identify proteins with desired characteristics. Shuffling of DNA segments from two or more genes creates a large number of hybrid proteins that can also be screened for unique biological activity.

      Barnes LM, Dickson AJ. 2006. Mammalian cell factories for efficient and stable protein expression. Curr. Opin. Biotechnol. 17:381–386.

      Berger I, Fitzgerald DJ, Richmond TJ. 2004. Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol. 22:1583–1587.

      Çelik E, Çalik P. 2012. Production of recombinant proteins by yeast cells. Biotechnol. Adv. 30:1108–1118.

      Chatterjee R, Yuan L. 2006. Directed evolution of metabolic pathways. Trends Biotechnol. 24:28–38.

      Chen R. 2012. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30:1102–1107.

      Chong SR, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA, et al. 1997. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. 192:271–281.

      Condreay JP, Kost TA. 2007. Baculovirus vectors for insect and mammalian cells. Curr. Drug Targets. 8:1126–1131.

      de Boer HA, Comstock LJ, Vasser M. 1983. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA. 80:21–25.

      Eijsink VGH, Bjørk A, Gåseidnes S, Sirevåg R, Synstad B, van den Burg B, Vriend G. 2004. Rational engineering of enzyme stability. J. Biotechnol. 113:105–120.

      Elleuche S, Pöggeler S. 2010. Inteins, valuable genetic elements in molecular biology and biotechnology. Appl. Microbiol. Biotechnol. 87:479–489.

      Ernst JF. 1988. Codon usage and gene expression. Trends Biotechnol. 6:196–199.

      Ferrer M, Chernikova TN, KTimmis KN, Golyshin PN. 2004. Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Appl. Environ. Microbiol. 70:4499–4504.

      Fong BA, Wu W-Y, Wood DW. 2010. The potential role of self-cleaving purification tags in commercial-scale processes. Trends Biotechnol. 28:271–279.

      Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, Giuliani M, Parrilli e, Branduardi P, Lang C, et al. 2008. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb. Cell Fact. 7:11–29.

      Geisow MJ. 1991. Both bane and blessing—inclusion bodies. Trends Biotechnol. 9:368–369.

      Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei E. 2005. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—a comparison. FEMS Yeast Res. 5:1079–1096.

      Glick BR. 1995. Metabolic load and heterologous gene expression. Biotechnol. Adv. 13:247–261.

      Hamilton SR, Gerngross TU. 2007. Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr. Opin. Biotechnol. 18:387–392.

      Heckman KL, Pease LR. 2007. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat. Protoc. 2:924–932.

      Kaur J, Sharma R. 2006. Directed evolution: an approach to engineer enzymes. Crit. Rev. Biotechnol. 26:165–199.

      Keyt BA, Paoni NF, Refino CJ, Berleau L, Nguyen H, Chow A, Lai J, Peña L, Pater C, Ogez J, et al. 1994. A faster-acting and more potent form of tissue plasminogen activator. Proc. Natl. Acad. Sci. USA. 91:3670–3674.

      Kjeldsen T, Hach M, Balschmidt P, Havelund S, Pettersson AF, Markussen J. 1998. Prepro-leaders lacking N-linked glycosylation for secretory expression in the yeast Saccharomyces cerevisiae. Protein Expr. Purif. 14:309–316.

      Kurokawa Y, Yanagi H, Yura T. 2000. Overexpression of protein disulfide isomerase DsbS stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66:3960–3965.

      Kwaks THJ, Otte AP. 2006. Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol. 24:137–142.

      Kwaks THJ, Sewalt RGAB, van Blokland R, Siersma TJ, Kasiem M, Kelder A, Otte AP. 2005. Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells. J. Biotechnol. 115:35–46.

      Liu X, Constantinescu SN, Sun Y, Bogan JS, Hirsch D, Weinberg RA, Lodish HF. 2000. Generation of mammalian cells stably expressing multiple genes at predetermined levels. Anal. Biochem. 280:20–28.

      Lucas BK, Giere LM, DeMarco RA, Shen A, Chisholm V, Crowley CW. 1996. High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res. 24:1774–1779.

      Majander K, Anton L, Antikainen J, Lang H, Brummer M, Korhonen TK, Westerlund-Wikström B. 2005. Extracellular secretion of polypeptides using a modified Escherichia coli flagellar secretion apparatus. Nat. Biotechnol. 23:475–481.

      Martinez-Morales F, Borges AC, Martinez A, Shanmugam KT, Ingram LO. 1999. Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons used during construction. J. Bacteriol. 181:7143–7148.

      Miyazaki C, Iba Y, Yamada Y, Takahashi H, Sawada J, Kurosawa Y. 1999. Changes in the specificity of antibodies by site-specific mutagenesis followed by random mutagenesis. Protein Eng. 12:407–415.

      Murakami H, Hohsaka T, Sisido M. 2002. Random insertion and deletion of arbitrary number of bases for codon-based random mutation of DNAs. Nat. Biotechnol. 20:76–81.

      Ness JE, Welch M, Giver L, Bueno M, JCherry JR, Borchert TV, Stemmer WPC, Minshull J. 1999. DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotechnol. 17:893–896.

      Palmeros B, Wild J, Szybalski W, LeBorgne S, Hernández-Chávez G, Gosset G, Valle F, Bolivar F. 2000. A family of removal cassettes designed to obtain antibiotic-resistance-free genomic modifications of Escherichia coli and other bacteria. Gene. 247:255–264.

      Pina AS, Lowe CR, Roque ACA. 2014. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol. Adv. 32:366–381.

      Prasad JM, Migliorini M, Galisteo R, Strickland DK. 2015. Generation

Скачать книгу