Fundamentals of Heat Engines. Jamil Ghojel

Чтение книги онлайн.

Читать онлайн книгу Fundamentals of Heat Engines - Jamil Ghojel страница 23

Fundamentals of Heat Engines - Jamil Ghojel

Скачать книгу

rel="nofollow" href="#fb3_img_img_c35ffd38-8ae0-57bb-a102-7818f78fcd6b.png" alt="equation"/>

      Similarly, the mole fraction (or mole concentration) can be found as follows:

      The molar mass of the total mixture is

equation

      From Eqs. (1.40), (1.41), and 1.42,

      (1.44)equation

      Example 1.1

      A gas mixture has the following mass composition:

equation equation

      Determine the molar composition of the mixture.

      Solution

equation
Gas % Mass fraction Mass fraction, ci Molecular mass, μi Mole fraction, ci/μi % Mole fraction
CO 2 17.55 0.175 5 44 0.003 99 images
O 2 4.26 0.042 6 32 0.001 33 images
N 2 76.33 0.763 3 28 0.027 26 images
CO 1.86 0.018 6 28 0.000 66 images
100 ci = 1.0 ci/μi = 0.03324 Total = 100

      1.3.2.1 Dalton Model of Gas Mixtures

equation equation

      For the components,

equation equation

      Since n = nA + nB,

equation

      or

      (1.45)equation

      pA and pB are known as the partial pressures.

equation equation equation

      Therefore,

equation

      It can be shown that the internal energy and enthalpy of a mixture of two gases (A and B) can be written as

equation equation

      The gas constants for the ith component and gas mixture are, respectively,

equation

      Using Eq. (1.43), we obtain

      (1.46)equation

      For the two‐gas mixture

equation

      1.3.3 Processes in Ideal Gas Systems

Скачать книгу