Secondary Metabolites of Medicinal Plants. Bharat Singh

Чтение книги онлайн.

Читать онлайн книгу Secondary Metabolites of Medicinal Plants - Bharat Singh страница 63

Автор:
Жанр:
Серия:
Издательство:
Secondary Metabolites of Medicinal Plants - Bharat Singh

Скачать книгу

and eco-friendly source of artemisinin (Acton and Roth 1992; Haynes and Vonwiller 1994). The genetic engineering of Saccharomyces cerevisiae to produce higher yield of artemisinic acid was attempted. The mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) genes from A. annua were transferred into yeast cells to enhance the production of amorpha-4,11-diene to artemisinic acid by genetic engineering (Ro et al. 2006).

      Artemisinin is an effective against both drug-resistant and cerebral malaria-causing organism such as P. falciparum. The low yield of artemisinin from aerial parts is a limitation to the commercial production of drug. So, to increase the production of artemisinin, the cell culture studies of this species are highly desirable. The production can be increased by better understanding of pathways of synthesis. The genetic engineering tools can be used for the overexpression of genes to link to the artemisinin synthesis. The synthesis can be overcome by changing fully or partially in the pathway of artemisinin production (Abdin et al. 2003).

      The methanolic extract of Artmisia aucheri possessed antileishmanial and cytotoxic activities. The different concentrations of growth hormones, thiamine HCl, showed better synthesis of artemisinin in the callus cultures of this species. The methanolic extract of callus also demonstrated cytotoxic activity (Gharehmatrossian et al. 2014; Mohammad et al. 2014). The different concentrations of BA, kinetin, IAA, and 2,4-D were added to the MS culture medium for obtaining callus in Artmisia absinthium. The lower concentration of BA with higher level of NAA and kinetin increased the callus growth. The best callus growth was obtained from the leaf explants in this plant species (Nin et al. 1996). The adventitious shoots regenerated and maintained on MS culture medium supplemented with gibberellic acid and casein hydrolysate. In these shoots, the synthesis of artemisinin was reported as higher in concentration. The hormone when used as elicitors during the synthesis of artemisinin was reduced. So, it is suggested that higher or lower synthesis of artemisinin is hormone specific and dependent on the presence or absence of nutrients in culture medium (Zia et al. 2007b).

      The estimation of phenylalanine lyase enzyme activity and their relationship with artemisinin synthesis in callus cultures of A. annua were studied. The synthesis of higher concentration of artemisinin is linked to the enzyme activity. Maximum enzyme activity and synthesis of artemisinin were reported in a four-week-old callus but, after this, the enzyme activity started to decrease. In decreased synthesis of enzymatic stage, it was also observed that artemisinin synthesis was found to be lower in concentration. Therefore, it is predicted that artemisinin synthesis is dependent on phenylalanine synthase enzymatic activity (Jhansi Rani et al. 2012).

      Cell suspension cultures developed from A. annua exhibited antimalarial activity against P. falciparum in vitro both in the n-hexane extract of the plant cell culture medium and in the chloroform extract of the cells. Trace amounts of the antimalarial sesquiterpene lactone artemisinin may account for the activity of the n-hexane fraction, but only the methoxylated flavonoids artemetin, chrysoplenetin, chrysosplenol D, and cirsilineol can account for the activity of the chloroform extract (Liu et al. 1992; Ferreira and Janick 2002).

      1 Abdin, M.Z., Israr, M., Rehman, R.U., and Jain, S.K. (2003). Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med. 69: 289–299.

      2 Acton, N. and Roth, R.J. (1992). On the conversion of dihydroartemisinic acid into artemisinin. J. Org. Chem. 57: 3610–3614.

      3 Amri, I., De Martino, L., Marandino, A. et al. (2013). Chemical composition and biological activities of the essential oil from Artemisia herba-alba growing wild in Tunisia. Nat. Prod. Commun. 8: 407–410.

      4 Arab, H.A., Rahbari, S., Rassouli, A. et al. (2006). Determination of artemisinin in Artemisia sieberi and anticoccidial effects of the plant extract in broiler chickens. Trop. Anim. Health Prod. 38: 497–503.

      5 Bartarya, R., Srivastava, A., Tonk, S. et al. (2009). Larvicidal activity of Artemisia annua L. callus culture against Anopheles stephensi larvae. J. Environ. Biol. 30: 395–398.

      6 Bhakuni, R.S., Jain, D.C., and Sharma, R.P. (2001). Secondary metabolites of Artemisia annua and their biological activity. Curr. Sci. 80: 35–44.

      7 Bilia, A.R., Melillo de Malgalhaes, P., Bergonzi, M.C., and Vincieri, F.F. (2006). Simultaneous analysis of artemisinin and flavonoids of several extracts of Artemisia annua L. obtained from a commercial sample and a selected cultivar. Phytomedicine 13: 487–493.

      8 Brown, G.D. (1992). Two new compounds from Artemisia annua. J. Nat. Prod. 55: 1756–1760.

      9 Brown, G.D. (1994). Secondary metabolism in tissue culture of Artemisia annua. J. Nat. Prod. 57: 975–977.

      10 Cai, G., Li, G., Ye, H., and Li, G. (1995). Hairy root culture of Artemisia annua L. by Ri plasmid transformation and biosynthesis of artemisinin. Chin. J. Biotechnol. 11 (4): 227–235.

      11 Crespo-Ortiz, M.P. and Wei, M.Q. (2012). Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J. Biomed. Biotechnol. 2012: 247597.

      12 Cui, L. and Su, X.-Z. (2010). Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti Infect. Ther. 7: 999–1013.

      13 Dhingra, V., Vishweshwar Rao, K., and Lakshmi Narasu, M. (1999). Artemisinin: present status and perspectives. Biochem. Educ. 27: 105–109.

      14 Efferth, T. (2007). Willmar Schwabe award 2006: antiplasmodial and antitumor activity of artemisinin – from bench to bedside. Planta Med. 73: 299–309.

      15 Efferth, T., Romero, M.R., Wolf, D.G. et al. (2008). The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis. 47: 804–811.

      16 El-Sahhar, K.F., Nassar, R.M., and Farag, H.M. (2010). Morphological and anatomical studies of Artemisia vulgaris L. (Asteraceae). J. Am. Sci. 6: 806–814.

      17 Ferreira, J.F.S. and Janick, J. (2002). Production of artemisinin from in vitro cultures of Artemisia annua L. In: Medicinal and Aromatic Plants XII. Biotechnology in Agriculture and Forestry, vol. 51 (eds. T. Nagata and Y. Ebizuka), 1–12. Berlin, Germany: Springer-Verlag.

      18 Ferreira, J.F.S., Luthria, D.L., Sasaki, T., and Heyerick, A. (2010). Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15: 3135–3170.

      19 Fulzele,

Скачать книгу