Economically and Environmentally Sustainable Enhanced Oil Recovery. M. R. Islam

Чтение книги онлайн.

Читать онлайн книгу Economically and Environmentally Sustainable Enhanced Oil Recovery - M. R. Islam страница 18

Автор:
Жанр:
Серия:
Издательство:
Economically and Environmentally Sustainable Enhanced Oil Recovery - M. R. Islam

Скачать книгу

Schematic of the various steps involved in petroleum technology with interconnected ellipses labeled “mystery and uncertainty,” “sustainable technology,” etc. and boxes labeled “drilling,” “transportation,” etc.

      Figure 2.1 Various steps involved in petroleum technology.

      In this chapter, a delinearized history of energy developments in relation to petroleum production, particularly as it relates to oil and gas is presented. It is complimented with timelines of unsustainable practices, including those involved in enhanced oil recovery (EOR).

      Ancient practices right up to the era of industrial revolution were all sustainable (Khan and Islam, 2012). The technological marvels ranging from pyramids and mummies to curving houses out of rock were all based on sustainable developments. The energy sources were no exception. The knowledge of how beneficial oil could be was widespread all across the ancient world and people from all continents used oil for a number of purposes. These practices were also extremely effective and produced far more durable products than what are available today, without adding toxic chemicals. In terms of petroleum use, pre-industrial age era used natural products in their raw form. For instance, for millennia tar, a naturally deposited petroleum product, was used as a sealant for roofing shingles, brick bonding, the hulls of ships and boats (Daintith, 2008). The desired quality of tar was its ability to be waterproof. Tar was also used us a general disinfectant. Often tar would be mixed with other natural oil, such as balsam turpentine, linseed oil or Chinese tung oil, to obtain the desired properties.

      Similarly, crude oil is known to have been used since the ancient era. Even today, some parts of the globe use crude oil for medicinal (Dienye et al., 2012) and therapeutical (Hoke, 2015) purposes. However, in the modern era, use of crude oil or petroleum products in their native form is not promoted as a valid material source for any application and invariably all petroleum resources undergo refining.

      In terms of refining petroleum products, there is evidence that even during medieval era, refining techniques were present. However, those days, refining was not done in an unsustainable manner (Islam et al., 2010). There is evidence that both distillation and expression were common during the medieval era. In the perfume industry, as early as during early Islamic era (7th century onward), distillation in the form of hydrodistillation and production of absolute, mainly through Enfleurage and fermentation was common (Katz, 2012).

      The distillation process for refining oil appears to have been practiced throughout ancient times. Recent discovery of a 5000-year-old earthenware distillation apparatus, used for steam distillation tells us that our ancestors were well versed on developing sustainable technologies (Shnaubelt, 2002). Khan and Islam (2016) demonstrated how an earthenware distillation apparatus is sustainable. The ancient and middle age practices were mainly focused on medicinal applications. It was the case in ancient Orient and ancient Greece and Rome, as well as the Americas the oils used for medicinal purposes.

      Over 1000 years ago, Al-Rāzī (865-923), a Persian Muslim alchemist, wrote a book titled: Kitāb al-Asrār (Book of Secrets), in which he outlined a series of refining and material processing technologies (See Taylor, 2015 for the translation). Al-Rāzī developed a perfectly functioning distillation process. In this distillation process, he used naturally occurring chemicals. His stockroom was enriched with products of Persian mining and manufacturing, even with sal ammoniac, a Chinese discovery. These were all additives that he was using similar to the way catalysts are used today. His approach was fitting for his time, but way ahead of today’s concept of technology development. He avoided, the ‘intellectual approach’ (what has become known as mechanical approach ever since Newtonian era or New Science) in favour of causal or essential approach (what Khan and Islam, 2016, called the ‘science of intangibles’). Table 2.1 shows that the 389 procedures by Al-Rāzī can be divided into four basic types: primary, intermediate, reagent, and preparation methods. The 175 “primary” procedures involve transformation of metals into gold or silver. It is worth noting here that bulk of Newton’s unpublished work also involved transformation of metals into gold (Zatzman and Islam, 2007). The 127 preparatory procedures involve softening and calcination. Today, equivalent processes are called denaturing, in which the natural features of materials are rendered artificial. Al-Rāzī then adds 51 procedures for reagent preparations. The reagents are solvents and tinctures, which usually contain trace amount of heavy metals. It is similar to what is used today except that Al-Rāzī used natural sources. Table 2.1 further shows 36 instructions for commonly needed processes such as mixing or dissolving.

      The procedure types include sublimation, calcination, softening whereas major sources are all natural (such as, quicksilver, sulfur, metals, stones). The calcination, sublimation and calcination themselves are also done through natural processes.

      The dominant theme was all source materials are derived from plants, animals and minerals and used in their natural state. The knowledge of seven alchemical procedures and techniques involved: sublimation and condensation of mercury, precipitation of sulphur, and arsenic calcination of minerals (gold, silver, copper, lead, and iron), salts, glass, talc, shells, and waxing. In addition, the source of heat was fire.

      Table 2.1 Classification of the procedures use by Al-Razi in Book of Secrets.

Скачать книгу

Type of procedure Purpose Count Percent Example
Primary Produces a substance that transforms metals into gold or silver 175 45 Sublimation of mercury
Intermediate