Astrobiology. Charles S. Cockell

Чтение книги онлайн.

Читать онлайн книгу Astrobiology - Charles S. Cockell страница 32

Astrobiology - Charles S. Cockell

Скачать книгу

to bonding. Consider the sodium atom (Na). It is in group 1 of the Periodic Table (see Appendix). It has 11 electrons (and therefore 11 protons – it has an atomic number of 11). Its electron structure is written as 1s2 2s2 2p6 3s1. The first number in this sequence is the shell number (in this atom there are three shells: 1, 2, and 3). Each letter (s and p) refers to a different subshell. The superscript shows the number of electrons in each subshell. Starting at the beginning, you can see that it has two electrons in shell 1, subshell s (1s2). This shell is full. Moving outwards in the layers of electrons, we then see that in the second shell, subshell s, it has two electrons (2s2). This is also full. In the second shell, we also have a p subshell. You will see that this has six electrons in it (2p6). The 2p subshell is made of three separate orbitals called x, y, and z of the same shape, each with a pair of electrons in them (they are full), giving the 2p subshell six electrons in total, hence 2p6. Finally, we come to the outermost shell, number 3, which has one lone electron in its s subshell (3s1). This electron shell is not full. By losing this lone electron, the sodium atom becomes more stable because the next shell down is full. In other words, in an unscientific turn of phrase, sodium wants to lose this dangling spare electron to achieve a noble gas, stable configuration.

      However, there are other consequences of losing this 3s1 electron. In losing it, the sodium atom gains a net positive charge, as it now has 11 protons, but only 10 electrons, making a net positive charge of 1. The product of this electron loss, written as Na+, is called an ion. An ion is an atom that has gained or lost electrons.

      To briefly illustrate this concept again on the other side of the Periodic Table, consider the element chlorine. Chlorine, in group 17 of the Periodic Table, has the electronic structure 1s2 2s2 2p6 3s2 3p5. You can see that in its last electron subshell, 3p5, it has five electrons. It would like to gain one to arrive at six electrons in the 3p subshell and therefore fill the shell. By gaining an electron, it would attain a noble gas electron configuration, making it more stable. If it does this, however, it will now have 17 protons and 18 electrons, resulting in a net negative charge of 1. It will have become the ion Cl.

      The tendency of atoms to lose or gain electrons in this way to attain a noble gas electron configuration explains the key features of many bonds that we look at in the next section.

      You will also notice that atoms have a tendency to lose or gain electrons in their outer electron shells since the ones below are full. The characteristics of the outer electron shells define the chemical behavior of different atoms. This explains why elements in the same group of the Periodic Table, for example carbon and silicon in group 14, which have the same electron configurations in their outer shells, tend to share similar chemical characteristics. This fact becomes important when we consider elements used in life in Chapter 4.

      At this point, it is worth revisiting the question we brought up in Chapter 1 that puts an astrobiological perspective on this discussion. How much of what we have just discussed can be said to be a universal characteristic of life? I think you'd agree that we can confidently say that everything we have discussed is universal. If there is an alien intelligence somewhere else in the Universe, they would be drawing diagrams like Figure 3.3. We can say this because we know that the Periodic Table is universal since the Pauli exclusion principle that determines electron structure is universal. This is not conjecture. Using spectroscopy, which is discussed at the end of this chapter, we know that distant galaxies and stars, and therefore the planets they host, are made of the same elements as we have discovered in the Periodic Table. The fundamental chemical structure of atoms that make up all life in the Universe, if it exists elsewhere, is the same as on this planet.

      With this knowledge of atoms and ions, we now consider how they bond together to construct molecules and ultimately large, complex molecules or macromolecules, such as the genetic material DNA, that make up life.

       ionic bonding,

       covalent bonding,

       metallic bonding,

       van der Waals interactions, and

       hydrogen bonding.

      The first three of these types of bonding are primarily involved in holding atoms together to make molecules, although ionic and covalent bonds also play prominent roles in holding parts of whole molecules together to generate three-dimensional structures. The last two types of bonding, van der Waals interactions and hydrogen bonding, are primarily involved in mediating interactions between individual molecules. Let's have a look at some of the features of these bonds and, in particular, how they are used in life.

      Ionic bonding is the electrostatic force of attraction between positively (+ve) and negatively (−ve) charged ions (primarily between non-metals such as chloride or fluoride ions and metals such as sodium or potassium ions). Most ionic compounds are crystalline solids at room temperature.

      The crucial feature of an ionic bond is that each atom either gains or loses an electron so that the resulting ion has its lowest energy (noble gas-like) configuration. Table salt, NaCl, is a typical example of ionic bonding, and you can see its structure in Figure 3.4. In this salt, sodium gives up an electron, and chlorine gains this electron so that both ions gain a noble gas configuration, as we saw in Section 3.4. In other words, the Na atom has transferred its electron to the Cl atom, and the result is two ions, Na+ and Cl.

Image described by caption.

       Figure 3.4 The structure of NaCl showing the alternating sodium and chloride ions.

      Source: Reproduced with permission of B. Blaus, https://commons.wikimedia.org/wiki/Category:Crystal_structure_of_sodium_chloride#/media/File:Blausen_0660_NaCl.png.

      After transferring an electron, we now have two ions, Na+ and Cl, with opposite charges. They are attracted to one another. However, if we have many of these ions, then things get more complicated. Clearly, negatively charged chloride ions will be repelled from each other, and positively charged sodium ions will be repelled from each other. If we place many Na+ and Cl ions together, the natural configuration they take up to maximize attraction and minimize repulsion is an alternating packed cubic structure (Figure 3.4). Other similar examples are cesium chloride (CsCl) and sodium fluoride (NaF).

      Ionic bonds are typically very strong. We can consider the stability of these bonds from an energetic (thermodynamic) point of view. Let's consider sodium fluoride, NaF. The energy required to break an ionic chemical bond in this structure is about 3 × 10−19 J. We can also calculate the typical thermal energy in a bond at a specified temperature. This is the thermal energy that would be in the bond when it is in equilibrium with a given environment at a particular temperature. This can be approximated by ∼kBT. kB is the Boltzmann constant,

Скачать книгу