Handbook of Microwave Component Measurements. Joel P. Dunsmore

Чтение книги онлайн.

Читать онлайн книгу Handbook of Microwave Component Measurements - Joel P. Dunsmore страница 23

Handbook of Microwave Component Measurements - Joel P. Dunsmore

Скачать книгу

of the network. It is a “nominal” impedance; that is, it is the impedance that we “name” when we are determining the S‐parameters, but it need not be associated with any impedance in the circuit. Thus, a 50 Ω test system can easily measure and display S‐parameters for a 75 Ω device, referenced to 75 Ω.

      The etymology of the term reflected derives from optics and refers to light reflecting off a lens or other object with an index of refraction different from air, whereas it appears that the genesis for the scattering or S‐matrix was derived in the study of particle physics, from the concept of wavelike particles scattering off crystals. In microwave work, scattering or S‐parameters are defined to relate the independent incident waves to the dependent waves; for a 2‐port network they become

      which can be placed in matrix form as

      (1.18)

      where a's represent the incident power at each port, that is, the power flowing into the port, and b's represent the scattered power, that is, the power reflected or emanating from each port. For more than two ports, the matrix can be generalized to

      (1.19)

, and reflected signals, bn and
.

      These definitions naturally lead to the concept that Snn parameters are reflection coefficients and are directly related to the DUT port input impedance and Smn parameters are transmission coefficients and are directly related to the DUT gain or loss from one port to another.

Schematic illustration of the circuit diagram of the one-port network.

      From inspection one can see that

      (1.22)equation

      (1.23)equation

      From here S11 can be derived from inspection as

      (1.25)equation

      (1.26)equation

      with the network terminated in an arbitrary impedance. As such, Γ1 represents the input impedance of a system comprised of the network and its terminating impedance. The important distinction is that S‐parameters of a network are invariant to the input of output terminations, providing they are defined to a consistent reference impedance, whereas the input impedance of a network depends upon the termination impedance at each of the other ports. The value of Γ1 of a 2‐port network can be directly computed from the S‐parameters and the terminating impedance, ZL, as

Скачать книгу