Introduction to Desalination. Fuad Nesf Alasfour

Чтение книги онлайн.

Читать онлайн книгу Introduction to Desalination - Fuad Nesf Alasfour страница 11

Introduction to Desalination - Fuad Nesf Alasfour

Скачать книгу

to treat high salinity feedwater such as seawaters.

      2 Reliable and rigid system.

      3 Require minimal conventional pretreatment for feedwater.

      4 Capacity to use low waste thermal heat (low grade) from power plants to save energy.

      5 Economical system if a heat source is available.

      6 Easy in maintenance.

      Disadvantages of thermal distillation:

      1 The amount of water production depends on feed thermo‐physical properties (Tf, xf, …).

      2 Tube scaling (CaSO4).

      3 High value of SEC specially at elevated values of thermal performance.

      Example 1.1 Boiling Phenomenon

      Steam flows in a nonadiabatic horizontal pipe (control volume) with an inlet conditions of images, and exits at images where T1 > T2, if pipe outer surface is surrounded by water droplets:

      1 Explain heat transfer phenomenon.

      2 Identify the process type.

      Solution

      1 Since T1 > T2, it is clear that steam is subjected to heat loss.Since , then . Since T1 > T2, then h2 – h1 is negative, which indicate that heat transfer sign is negative, implying that heat is lost from the system (steam) to the surrounding.

      2 Isobaric process.

       Extra activity:

      Student can perform the following:

      1 Describe boiling phenomenon in MEE system.

      2 Why kinetic and potential energy terms have been neglected from energy balance (first law of thermodynamics)? Explain.

      3 Explain the process associated with change of water droplet phase that surrounds the exterior pipe wall. What is the type of evaporation process?

      4 Based on real numbers, compare the value of h1 against h2. Explain the physical meaning of such difference.

      5 Sketch T–v, P–v, and T–s diagrams showing boiling process.

      Example 1.2 Flashing Phenomenon

      Adiabatic rigid tank (control mass) is divided into two nonequal volumes: A and B by a flexible membrane. Part A contains H2O liquid at 7 kg, 220 kPa, images, and at 25 °C, and part B is at sub‐atmospheric pressure under vacuum state condition with no mass and has a volume of 2 images.

      If membrane is ruptured by making a hole such that two systems reach a final equilibrium state at 25 °C:

       Find:

      1 What is the type of water evaporation process?

      2 Final specific volume.

      3 Final pressure.

      4 Equations that represent exergy destruction (irreversibility).

      Solution

      1 Flashing process, where sudden drop in pressure causes water to evaporate via flashing, it is always associated with lightning and heat release.

      2 Hence

      3 P2 = 3.17 kPa

      4 Entropy generation

      Exergy destruction

equation

       Extra activity:

      Student can perform the following:

      1 Describe the flashing process in MSF system.

      2 Sketch T–v, P–v, and T–s diagrams showing flashing process.

      3 Perform a parametric study to investigate the effect of initial water temperature on final phase. Sketch and explain.

      4 Perform a parametric study to investigate the effect of VB on final phase. Sketch and explain.

      5 Calculate the amount of heat release from flashing process, and explain physically what is the source and cause of such heat.

      6 Perform a parametric study to investigate the effect of ratio on irreversibility.

      Example 1.3 Feedwater Heat Exchanger

      An adiabatic heat exchanger is used to heat feedwater (H2O) from 40 to 120 °C.

images images Schematic illustration of the process of feedwater heat exchanger.

       Find:

      1  ratio.

      2 Heat transfer rate from thermal load (steam) to feedwater.

      3 Exergy destruction (irreversibility) per kg of feedwater.

      Solution

      1 Mass balance: Energy balance (first law of thermodynamics):or .

      2 

      3 Hence

       Extra activity:

      1 Perform parametric study to investigate the effect of varying Tfeed during summer to winter seasons on heat transfer performance. Plot and explain. Take Tsummer = 35 °C.

      2 Calculate exergy flow rate at all four states. Explain.

      3 Resolve example using feedwater as seawater with salinity of 40 000 ppm. Refer to Appendix A for thermo‐physical properties.

      1.4.2

Скачать книгу