Introduction to Desalination. Fuad Nesf Alasfour

Чтение книги онлайн.

Читать онлайн книгу Introduction to Desalination - Fuad Nesf Alasfour страница 14

Introduction to Desalination - Fuad Nesf Alasfour

Скачать книгу

Potassium K+ 390 +1 1.11 9.97 39.098 Bicarbonate HCO3 145 −1 0.41 2.34 61.016 Bromide Br 66 −1 0.19 0.83 79.904 Borate BO33− 27 −3 0.08 0.46 58.808 Strontium Sr2+ 13 +2 0.04 0.091 87.620 Fluoride F 1 −1 0.003 0.068 18.998 Σxi = 35 151 ppm

      Note that Cl makes up to 55% of salt in seawater and NaCl makes up to 86% of salt in seawater.

      Example 1.5 Heat Exchanger with Feed Seawater

      An adiabatic heat exchanger provides thermal load to feed seawater, such that feed seawater can be supplied to MEE desalination system at 70 °C.

      Steam stream: 1 kg/s, 120 °C

       State 1: saturated vapor

       State 2: saturated liquid

      Feed seawater stream:

       State 3: 20 °C

       State 4: 70 °C

      xf = 40 000 ppm

Schematic illustration of heat exchanger with feed seawater.

       Find:

      1 Feed seawater flow rate.

      2 Assume feed is fresh water, find feed flow rate.

      3 If steam (thermal load) is generated by conventional boiler using natural gas as a fuel, find fuel flow rate and emitted amount of CO2.

      4 Provide emission table for three types of fuels to generate steam (thermal load).

      Solution

      1 Energy balance (first law): of thermal load (≈11 time of steam flow rate).Alternative solutioncp is calculated at then kg) of thermal load.

      2 If feed is fresh water

      3 The of natural gas fuel.For CO2 emission

      4 Environmental impact of burning fossil fuels.

Fuel Calorific value (MJ/kg) CO2 (kg/kgfuel) CO2/energy (kg/MJ) SO2 (kg/kgfuel)
Coal 26 2.361 0.091 0.018
Fuel oil 42 3.153 0.075 0.040
Natural gas 55 2.750 0.050 0

       Extra activity:

      Student can perform the following:

      1 Perform parametric study to investigate the effect of on . Plot and explain.

      2 Perform parametric study to investigate the effect of xf on . Plot and explain.

      3 Find the values of the following thermo‐physical parameters at and (xf= 40 000 ppm); boiling point elevation (BPE), μ, v, k, hfg, cp, u, s, ρ. Explain the reason behind the differences.

      4 Find the values of the following thermo‐physical parameters at under two salinities; xf = 20 000 and 40 000 ppm for; BPE, μ, v, k, hfg, cp, u, s, ρ. Explain the reason behind the differences.

      5 Calculate entropy generation and irreversibility per mass of feedwater flow rate.

      Example 1.6 Performance of Feed Pump

      Feedwater is pumped from 100 kPa, 30 °C, 1.5 kg/s to 3 MPa, if pump efficiency is 75%:

Schematic illustration of the Performance of Feed Pump.

       Find:

      1 Actual work input

      2 Reversible work

      3 Exergy destruction (irreversibility)

      4 Second law efficiency

      Solution

      1 Working fluid water:State 1then h2 = 131.4 kJ/kg and s2 = 0.4423 kJ/(kg K).

      2 Wrev = Ψ2 − Ψ1

      3 Exergy destruction (irreversibility):

      4 Exergetic efficiency:

       Extra activity:

      Student can perform the following:

      1 Sketch T–v, P–v, and T–s diagram for actual and isentropic processes.

      2 Resolve example using seawater (x = 40 000 ppm) as feed. Refer to Appendix A.

      3 Compare results of feed seawater against water. Explain and comment.

      Example 1.7 Exergy Analysis

Скачать книгу