Quantum Mechanics, Volume 3. Claude Cohen-Tannoudji

Чтение книги онлайн.

Читать онлайн книгу Quantum Mechanics, Volume 3 - Claude Cohen-Tannoudji страница 52

Quantum Mechanics, Volume 3 - Claude Cohen-Tannoudji

Скачать книгу

variable x characterizes the modulus of each of the two components of the variational function (63). A second variable is needed to define the relative phase between these two components, which comes into play for example in (66). Instead of studying the time evolution of the fluid state vector inside this variational family, we shall simply give a qualitative argument, for several reasons. First of all, it is not easy to characterize precisely the coupling between the fluid and the environment by a Hamiltonian that can change the fluid rotational angular momentum (for example, the wall’s irregularities may transfer energy and angular momentum from the fluid to the container). Furthermore, as the time-dependent Gross-Pitaevskii equation is nonlinear, its precise solutions are generally found numerically. This is why we shall only qualitatively discuss the effects of the potential barrier found in §3-b. The higher this barrier, the more difficult it is for x to go from l to l’. Let us evaluate the variation of the average energy as a function of x.

      The other two curves in Figure 3 correspond to a much larger value of g, hence, according to (39), to a much higher value of c. There are now several values of l for which vl is small compared to c. The dashed line corresponds, as for the previous curve, to a superposition of the two states l = 1 and l′ = l — 1; the solid line (for the same value of g) to a superposition of l = 3 and l′ = 0, corresponding to the case where the system goes directly from the state l = 3 to the rotational ground state in the torus, with l′ = 0. It is obviously this last curve that presents the lowest energy barrier starting from l = 3 (shown with a circle in the figure). This is normal since this is the curve that involves the largest variation in the kinetic energy, in a sense opposite to that of the potential energy variation. It is thus the direct transition from l = 3 to l′ = 0 that will determine the possibility for the system to relax towards a state of slower rotation. Let us again use (74) and (80) to compare the kinetic energy variation and the height of the repulsive potential barrier. All the states l, with velocities vl much larger than c, have a kinetic energy much bigger than the maximum value of the potential energy: no energy barrier can be formed. On the other hand, all the states l with velocities vl much smaller than c cannot lower their rotational state without going over a potential barrier.

      In between these two extreme cases, there exists (for a given g) a “critical” value lc corresponding to the onset of the barrier. It is associated with a “critical velocity” vc = lcħ/mr, of the order of the sound velocity c, fixing the maximum value of vl for which this potential barrier exists. If the fluid rotational velocity in the torus is greater than vc, the liquid can slow down its rotation without going over an energy barrier, and dissipation occurs as in an ordinary viscous liquid – the fluid is said to be “normal”. If, however, the fluid velocity is less than the critical velocity, the physical system must necessarily go over a potential barrier (or more) to continuously tend towards l = 0. As this barrier results from the repulsion between all the particles and their neighbors, it has a macroscopic value. In principle, any barrier can be overcome, be it by thermal excitation, or by the quantum tunnel effect. However the time needed for this passage may take a gigantic value. First of all, it is extremely unlikely for a thermal fluctuation to reach a macroscopic energy value. As for the tunnel effect, its transition probability decreases exponentially with the barrier height and becomes extremely low for a macroscopic object. Consequently, the relaxation times of the fluid velocity may become extraordinarily large, and, on the human scale, the rotation can be considered to last indefinitely. This phenomenon is called “superfluidity”.

      The higher the coupling constant g, the more l states presenting a minimum in the potential energy appear. They correspond to flow velocities in the torus that are smaller than the critical velocity. To go from the rotational state l = 1 to the motionless state l = 0, the system must go over a macroscopic energy barrier, which only occurs with a probability so small it can be considered equal to zero. The rotational current is therefore permanent, lasting for years, and the system is said to be superfluid. On the other hand,

Скачать книгу