Hybridized and Coupled Nanogenerators. Ya Yang
Чтение книги онлайн.
Читать онлайн книгу Hybridized and Coupled Nanogenerators - Ya Yang страница 25
References
1 1 Wiser, R., Jenni, K., Seel, J. et al. (2016). Expert elicitation survey on future wind energy costs. Nat. Energy 1: 16135.
2 2 Mertens, S. (2003). The energy yield of roof mounted wind turbines. Wind Eng. 27: 507.
3 3 Grant, A., Johnstone, C., and Kelly, N. (2008). Urban wind energy conversion: the potential of ducted turbines. Renewable Energy 33: 1157.
4 4 Hameed, Z., Hong, Y., Cho, Y. et al. (2009). Condition monitoring and fault detection of wind turbines and related algorithms: a review. Renewable Sustainable Energy Rev. 13 (1): 1.
5 5 Islam, M., Mekhilef, S., and Saidur, R. (2013). Progress and recent trends of wind energy technology. Renewable Sustainable Energy Rev. 21: 456–468.
6 6 Henriques, J., Da Silva, F.M., Estanqueiro, A., and Gato, L. (2009). Design of a new urban wind turbine airfoil using a pressure‐load inverse method. Renewable Energy 34: 2728.
7 7 Chong, W., Fazlizan, A., Poh, S. et al. (2012). Early development of an innovative building integrated wind, solar and rain water harvester for urban high rise application. Energy Build. 47: 201.
8 8 Hoogwijk, M., de Vries, B., and Turkenburg, W. (2004). Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econ. 26: 889.
9 9 Sfetsos, A. (2000). A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy 21: 23.
10 10 Seguro, J. and Lambert, T. (2000). Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind Eng. Ind. Aerodyn. 85: 75.
11 11 Al‐Bahadly, I. (2009). Building a wind turbine for rural home. Renewable Sustainable Energy Rev. 13: 159.
12 12 Walker, S.L. (2011). Building mounted wind turbines and their suitability for the urban scale – a review of methods of estimating urban wind resource. Energy Build. 43: 1852.
13 13 Ricciardelli, F. and Polimeno, S. (2006). Some characteristics of the wind flow in the lower urban boundary layer. J. Wind Eng. Ind. Aerodyn. 94: 815.
14 14 Schallenberg‐Rodriguez, J. (2013). A methodological review to estimate techno‐economical wind energy production. Renewable Sustainable Energy Rev. 21: 272.
15 15 Herbert, G.J., Iniyan, S., Sreevalsan, E., and Rajapandian, S. (2007). A review of wind energy technologies. Renewable Sustainable Energy Rev. 11: 1117.
16 16 Safari, B. and Gasore, J. (2010). A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda. Renewable Energy 35: 2874.
17 17 Mithraratne, N. (2009). Roof‐top wind turbines for microgeneration in urban houses in New Zealand. Energy Build. 41: 1013.
18 18 Fan, F.‐R., Tian, Z.‐Q., and Wang, Z.L. (2012). Flexible triboelectric generator. Nano Energy 1: 328.
19 19 Wang, S., Lin, L., and Wang, Z.L. (2012). Nanoscale triboelectric‐effect‐enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12: 6339.
20 20 Yang, Y., Zhang, H., Chen, J. et al. (2013). Single‐electrode‐based sliding triboelectric nanogenerator for self‐powered displacement vector sensor system. ACS Nano 7: 7342.
21 21 Niu, S., Liu, Y., Wang, S. et al. (2013). Theory of sliding‐mode triboelectric nanogenerators. Adv. Mater. 25: 6184.
22 22 Wang, S., Lin, L., Xie, Y. et al. (2013). Sliding‐triboelectric nanogenerators based on in‐plane charge‐separation mechanism. Nano Lett. 13: 2226.
23 23 Niu, S., Wang, S., Lin, L. et al. (2013). Theoretical study of contact‐mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6: 3576.
24 24 Liu, Y., Niu, S., and Wang, Z.L. (2015). Theory of tribotronics. Adv. Electron. Mater. 1: 1500124.
25 25 Zhu, G., Peng, B., Chen, J. et al. (2015). Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14: 126.
26 26 Dharmasena, R.D.I.G., Jayawardena, K., Mills, C. et al. (2017). Triboelectric nanogenerators: providing a fundamental framework. Energy Environ. Sci. 10: 1801.
27 27 Wang, Z.L. (2015). Triboelectric nanogenerators as new energy technology and self‐powered sensors–principles, problems and perspectives. Faraday Discuss. 176: 447.
28 28 Ishugah, T., Li, Y., Wang, R., and Kiplagat, J. (2014). Advances in wind energy resource exploitation in urban environment: a review. Renewable Sustainable Energy Rev. 37: 613–626.
29 29 Grant, I., Mo, M., Pan, X. et al. (2000). An experimental and numerical study of the vortex filaments in the wake of an operational, horizontal‐axis, wind turbine. J. Wind Eng. Ind. Aerodyn. 85: 177.
30 30 Ayhan, D. and Sağlam, Ş. (2012). A technical review of building‐mounted wind power systems and a sample simulation model. Renewable Sustainable Energy Rev. 16: 1040.
31 31 Gordeeva, L., Restuccia, G., Cacciola, G., and Aristov, Y.I. (1998). Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties. Kinet. Catal. 63: 81–88.
32 32 Yang, Y., Zhu, G., Zhang, H. et al. (2013). Triboelectric nanogenerator for harvesting wind energy and as self‐powered wind vector sensor system. ACS Nano 7: 9461.
33 33 Wang, S., Mu, X., Yang, Y. et al. (2015). Flow‐driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 27 (2): 240.
34 34 Wang, S., Mu, X., Wang, X. et al. (2015). Elasto‐aerodynamics‐driven triboelectric nanogenerator for scavenging air‐flow energy. ACS Nano 9: 9554.
35 35 Xie, Y., Wang, S., Lin, L. et al. (2013). Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7: 7119.
36 36 Zhang, H., Wang, J., Xie, Y. et al. (2016). Self‐powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy. ACS Appl. Mater. Interfaces 8: 32649.
37 37 Bae, J., Lee, J., Kim, S. et al. (2014). Flutter‐driven triboelectrification for harvesting wind energy. Nat. Commun. 5: 4929.
38 38 Ren, X., Fan, H., Wang, C. et al. (2018). Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self‐powered water splitting. Nano Energy 50: 562.
39 39 Quan, Z., Han, C.B., Jiang, T., and Wang, Z.L. (2016). Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 6: 1501799.
40 40 Wang, J.,