Hybridized and Coupled Nanogenerators. Ya Yang

Чтение книги онлайн.

Читать онлайн книгу Hybridized and Coupled Nanogenerators - Ya Yang страница 25

Hybridized and Coupled Nanogenerators - Ya Yang

Скачать книгу

theoretical models and working mechanisms of current WD‐TENGs have been described in this chapter. The output performances of the TENGs can be improved by optimizing advanced structures and materials. Among the several structures, vibrating plate‐based structure, elasto‐aerodynamics‐based structure, and rotary‐driven mechanical structure are three popular structures. Some advanced materials, such as cellulose, superhydrophobic surfaces, and nanowires, have been used. Lastly, soma smart self‐powered devices based on WD‐TENGs are introduced to present wide application prospects.

      1 1 Wiser, R., Jenni, K., Seel, J. et al. (2016). Expert elicitation survey on future wind energy costs. Nat. Energy 1: 16135.

      2 2 Mertens, S. (2003). The energy yield of roof mounted wind turbines. Wind Eng. 27: 507.

      3 3 Grant, A., Johnstone, C., and Kelly, N. (2008). Urban wind energy conversion: the potential of ducted turbines. Renewable Energy 33: 1157.

      4 4 Hameed, Z., Hong, Y., Cho, Y. et al. (2009). Condition monitoring and fault detection of wind turbines and related algorithms: a review. Renewable Sustainable Energy Rev. 13 (1): 1.

      5 5 Islam, M., Mekhilef, S., and Saidur, R. (2013). Progress and recent trends of wind energy technology. Renewable Sustainable Energy Rev. 21: 456–468.

      6 6 Henriques, J., Da Silva, F.M., Estanqueiro, A., and Gato, L. (2009). Design of a new urban wind turbine airfoil using a pressure‐load inverse method. Renewable Energy 34: 2728.

      7 7 Chong, W., Fazlizan, A., Poh, S. et al. (2012). Early development of an innovative building integrated wind, solar and rain water harvester for urban high rise application. Energy Build. 47: 201.

      8 8 Hoogwijk, M., de Vries, B., and Turkenburg, W. (2004). Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econ. 26: 889.

      9 9 Sfetsos, A. (2000). A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy 21: 23.

      10 10 Seguro, J. and Lambert, T. (2000). Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind Eng. Ind. Aerodyn. 85: 75.

      11 11 Al‐Bahadly, I. (2009). Building a wind turbine for rural home. Renewable Sustainable Energy Rev. 13: 159.

      12 12 Walker, S.L. (2011). Building mounted wind turbines and their suitability for the urban scale – a review of methods of estimating urban wind resource. Energy Build. 43: 1852.

      13 13 Ricciardelli, F. and Polimeno, S. (2006). Some characteristics of the wind flow in the lower urban boundary layer. J. Wind Eng. Ind. Aerodyn. 94: 815.

      14 14 Schallenberg‐Rodriguez, J. (2013). A methodological review to estimate techno‐economical wind energy production. Renewable Sustainable Energy Rev. 21: 272.

      15 15 Herbert, G.J., Iniyan, S., Sreevalsan, E., and Rajapandian, S. (2007). A review of wind energy technologies. Renewable Sustainable Energy Rev. 11: 1117.

      16 16 Safari, B. and Gasore, J. (2010). A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda. Renewable Energy 35: 2874.

      17 17 Mithraratne, N. (2009). Roof‐top wind turbines for microgeneration in urban houses in New Zealand. Energy Build. 41: 1013.

      18 18 Fan, F.‐R., Tian, Z.‐Q., and Wang, Z.L. (2012). Flexible triboelectric generator. Nano Energy 1: 328.

      19 19 Wang, S., Lin, L., and Wang, Z.L. (2012). Nanoscale triboelectric‐effect‐enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12: 6339.

      20 20 Yang, Y., Zhang, H., Chen, J. et al. (2013). Single‐electrode‐based sliding triboelectric nanogenerator for self‐powered displacement vector sensor system. ACS Nano 7: 7342.

      21 21 Niu, S., Liu, Y., Wang, S. et al. (2013). Theory of sliding‐mode triboelectric nanogenerators. Adv. Mater. 25: 6184.

      22 22 Wang, S., Lin, L., Xie, Y. et al. (2013). Sliding‐triboelectric nanogenerators based on in‐plane charge‐separation mechanism. Nano Lett. 13: 2226.

      23 23 Niu, S., Wang, S., Lin, L. et al. (2013). Theoretical study of contact‐mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6: 3576.

      24 24 Liu, Y., Niu, S., and Wang, Z.L. (2015). Theory of tribotronics. Adv. Electron. Mater. 1: 1500124.

      25 25 Zhu, G., Peng, B., Chen, J. et al. (2015). Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14: 126.

      26 26 Dharmasena, R.D.I.G., Jayawardena, K., Mills, C. et al. (2017). Triboelectric nanogenerators: providing a fundamental framework. Energy Environ. Sci. 10: 1801.

      27 27 Wang, Z.L. (2015). Triboelectric nanogenerators as new energy technology and self‐powered sensors–principles, problems and perspectives. Faraday Discuss. 176: 447.

      28 28 Ishugah, T., Li, Y., Wang, R., and Kiplagat, J. (2014). Advances in wind energy resource exploitation in urban environment: a review. Renewable Sustainable Energy Rev. 37: 613–626.

      29 29 Grant, I., Mo, M., Pan, X. et al. (2000). An experimental and numerical study of the vortex filaments in the wake of an operational, horizontal‐axis, wind turbine. J. Wind Eng. Ind. Aerodyn. 85: 177.

      30 30 Ayhan, D. and Sağlam, Ş. (2012). A technical review of building‐mounted wind power systems and a sample simulation model. Renewable Sustainable Energy Rev. 16: 1040.

      31 31 Gordeeva, L., Restuccia, G., Cacciola, G., and Aristov, Y.I. (1998). Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties. Kinet. Catal. 63: 81–88.

      32 32 Yang, Y., Zhu, G., Zhang, H. et al. (2013). Triboelectric nanogenerator for harvesting wind energy and as self‐powered wind vector sensor system. ACS Nano 7: 9461.

      33 33 Wang, S., Mu, X., Yang, Y. et al. (2015). Flow‐driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 27 (2): 240.

      34 34 Wang, S., Mu, X., Wang, X. et al. (2015). Elasto‐aerodynamics‐driven triboelectric nanogenerator for scavenging air‐flow energy. ACS Nano 9: 9554.

      35 35 Xie, Y., Wang, S., Lin, L. et al. (2013). Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7: 7119.

      36 36 Zhang, H., Wang, J., Xie, Y. et al. (2016). Self‐powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy. ACS Appl. Mater. Interfaces 8: 32649.

      37 37 Bae, J., Lee, J., Kim, S. et al. (2014). Flutter‐driven triboelectrification for harvesting wind energy. Nat. Commun. 5: 4929.

      38 38 Ren, X., Fan, H., Wang, C. et al. (2018). Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self‐powered water splitting. Nano Energy 50: 562.

      39 39 Quan, Z., Han, C.B., Jiang, T., and Wang, Z.L. (2016). Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 6: 1501799.

      40 40 Wang, J.,

Скачать книгу