Hybridized and Coupled Nanogenerators. Ya Yang

Чтение книги онлайн.

Читать онлайн книгу Hybridized and Coupled Nanogenerators - Ya Yang страница 26

Hybridized and Coupled Nanogenerators - Ya Yang

Скачать книгу

ACS Nano 12: 3954.

      41 41 Zhang, L., Zhang, B., Chen, J. et al. (2016). Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 28: 1650.

      42 42 Zhao, Z., Pu, X., Du, C. et al. (2016). Freestanding flag‐type triboelectric nanogenerator for harvesting high‐altitude wind energy from arbitrary directions. ACS Nano 10: 1780.

      43 43 Klemm, D., Heublein, B., Fink, H.P., and Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44: 3358.

      44 44 Kalia, S., Dufresne, A., Cherian, B.M. et al. (2011). Cellulose‐based bio‐and nanocomposites: a review. Int. J. Polym. Sci. 2011: 837875.

      45 45 Moon, R.J., Martini, A., Nairn, J. et al. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941.

      46 46 Siró, I. and Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17: 459.

      47 47 Klemm, D., Kramer, F., Moritz, S. et al. (2011). Nanocelluloses: a new family of nature‐based materials. Angew. Chem. Int. Ed. 50: 5438.

      48 48 Eichhorn, S.J., Dufresne, A., Aranguren, M. et al. (2010). Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45: 1.

      49 49 Hubbe, M.A., Rojas, O.J., and Lucia, L.A. (2015). Green modification of surface characteristics of cellulosic materials at the molecular or nano scale: a review. BioResources 10: 6095.

      50 50 Hubbe, M.A. (2006). Bonding between cellulosic fibers in the absence and presence of dry‐strength agents – a review. BioResources 1: 281.

      51 51 Chen, B., Yang, N., Jiang, Q. et al. (2018). Transparent triboelectric nanogenerator‐induced high voltage pulsed electric field for a self‐powered handheld printer. Nano Energy 44: 468.

      52 52 Kim, H.‐J., Yim, E.‐C., Kim, J.‐H. et al. (2017). Bacterial nano‐cellulose triboelectric nanogenerator. Nano Energy 33: 130.

      53 53 Yao, C., Hernandez, A., Yu, Y. et al. (2016). Triboelectric nanogenerators and power‐boards from cellulose nanofibrils and recycled materials. Nano Energy 30: 103.

      54 54 Chandrasekhar, A., Alluri, N.R., Saravanakumar, B. et al. (2017). A microcrystalline cellulose ingrained polydimethylsiloxane triboelectric nanogenerator as a self‐powered locomotion detector. J. Mater. Chem. C 5: 1810.

      55 55 Peng, J., Zhang, H., Zheng, Q. et al. (2017). A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9: 1428.

      56 56 Yao, C., Yin, X., Yu, Y. et al. (2017). Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 27: 1700794.

      57 57 Šutka, A., Ruža, J., Järvekülg, M. et al. (2018). Triboelectric nanogenerator based on immersion precipitation derived highly porous ethyl cellulose. J. Electrostat. 92: 1.

      58 58 He, X., Zou, H., Geng, Z. et al. (2018). A hierarchically nanostructured cellulose fiber‐based triboelectric nanogenerator for self‐powered healthcare products. Adv. Funct. Mater. 28: 1805540.

      59 59 Oh, H., Kwak, S.S., Kim, B. et al. (2019). Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater.

      60 60 Qian, C., Li, L., Gao, M. et al. (2019). All‐printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi‐functional sensors. Nano Energy 63: 103885.

      61 61 Zhao, K., Wang, Z.L., and Yang, Y. (2016). Self‐powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic‐surface‐based triboelectric nanogenerator. ACS Nano 10: 9044.

      62 62 Dudem, B., Huynh, N.D., Kim, W. et al. (2017). Nanopillar‐array architectured PDMS‐based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano Energy 42: 269.

      63 63 Guo, H., Chen, J., Tian, L. et al. (2014). Airflow‐induced triboelectric nanogenerator as a self‐powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 6: 17184.

      64 64 Wang, M., Zhang, N., Tang, Y. et al. (2017). Single‐electrode triboelectric nanogenerators based on sponge‐like porous PTFE thin films for mechanical energy harvesting and self‐powered electronics. J. Mater. Chem. A 5: 12252.

      65 65 Zhao, P., Soin, N., Prashanthi, K. et al. (2018). Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high‐performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 10: 5880.

      66 66 Kang, H., Buchman, J.T., Rodriguez, R.S. et al. (2018). Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem. Rev. 119: 664.

      67 67 Jiang, Q., Chen, B., and Yang, Y. (2018). Wind‐driven triboelectric nanogenerators for scavenging biomechanical energy. ACS Appl. Energy Mater. 1: 4269.

      68 68 Cheon, S., Kang, H., Kim, H. et al. (2018). High‐performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride–silver nanowire composite nanofibers. Adv. Funct. Mater. 28: 1703778.

      69 69 Jiang, Q., Chen, B., Zhang, K., and Yang, Y. (2017). Ag nanoparticle‐based triboelectric nanogenerator to scavenge wind energy for a self‐charging power unit. ACS Appl. Mater. Interfaces 9: 43716.

      70 70 Lee, S., Ko, W., Oh, Y. et al. (2015). Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12: 410.

      71 71 Chun, J., Kim, J.W., Jung, W.‐s. et al. (2015). Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 8: 3006.

      72 72 Zhang, Z., Chen, Y., Debeli, D.K., and Guo, J.S. (2018). Facile method and novel dielectric material using a nanoparticle‐doped thermoplastic elastomer composite fabric for triboelectric nanogenerator applications. ACS Appl. Mater. Interfaces 10: 13082.

      73 73 Taneda, S. (1968). Waving motions of flags. J. Phys. Soc. Jpn. 24: 392.

      74 74 Ahmed, A., Hassan, I., Hedaya, M. et al. (2017). Farms of triboelectric nanogenerators for harvesting wind energy: a potential approach towards green energy. Nano Energy 36: 21.

      75 75 Liu, X., Zhao, K., and Yang, Y. (2018). Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy 53: 622.

      76 76 Chen, S., Gao, C., Tang, W. et al. (2015). Self‐powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 14: 217.

      77 77 Zhao, X., Chen, B., Wei, G. et al. (2019). Polyimide/graphene nanocomposite foam‐based wind‐driven triboelectric nanogenerator for self‐powered pressure sensor. Adv. Mater. Technol. 4: 1800723.

      78 78 Chen, B., Yang, Y., and Wang, Z.L. (2018). Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8: 1702649.

      Note

      1 *Corresponding author: [email protected]

      Конец

Скачать книгу