Principles of Virology. Jane Flint

Чтение книги онлайн.

Читать онлайн книгу Principles of Virology - Jane Flint страница 37

Автор:
Жанр:
Серия:
Издательство:
Principles of Virology - Jane Flint

Скачать книгу

investigation of bacteriophages established not only the foundations for the field of molecular biology but also fundamental insights into how viruses interact with their host cells.

      Throughout the early period of virology when many viruses of plants, animals, and bacteria were cataloged, ideas about the origin and nature of these distinctive infectious agents were quite controversial. Arguments centered on whether viruses originated from parts of a cell or were built from unique components. Little progress was made toward resolving these issues and establishing the definitive properties of viruses until the development of new techniques that allowed their visualization or propagation in cultured cells.

      Dramatic confirmation of the structural simplicity of virus particles came in 1935, when Wendell Stanley obtained crystals of tobacco mosaic virus. At that time, nothing was known of the structural organization of any biologically important macromolecules, such as proteins and DNA. Indeed, the crucial role of nucleic acids as genetic material had not even been recognized. The ability to obtain an infectious agent in crystalline form, a state that was more generally associated with inorganic material, created much wonder and speculation about whether a virus is truly a life form. In retrospect, it is obvious that the relative ease with which this particular virus could be crystallized was a direct result of its structural simplicity.

       Organisms as Hosts

      After specific viruses and appropriate host organisms were identified, it became possible to produce sufficient quantities of virus particles for study of their physical and chemical properties and the consequences of infection for the host. Features such as the incubation period, symptoms of infection, and effects on specific tissues and organs were investigated. Laboratory animals remain an essential tool in investigations of the pathogenesis of viruses that cause disease. However, real progress toward understanding the mechanisms of virus reproduction was made only with the development of cell culture systems. The first and the simplest, but crucial to both virology and molecular biology, were cultures of bacterial cells.

       Lessons from Bacteriophages

      In the late 1930s and early 1940s, the bacteriophages, or “phages,” received increased attention as a result of controversy centering on how they might have arisen. John Northrup, a biochemist at the Rockefeller Institute in Princeton, NJ, championed the theory that a phage was a metabolic product of a bacterium. On the other hand, Max Delbrück, in his work with Emory Ellis and later with Salvador Luria, regarded phages as autonomous, stable, self-replicating entities characterized by heritable traits. According to this paradigm, phages were seen as ideal tools with which to investigate the nature of genes and heredity. Probably the most critical early contribution of Delbrück and Ellis was the perfection of the “one-step growth” method for synchronization of the reproduction of phages, an achievement that allowed analysis of a single cycle of phage reproduction in a population of bacteria. This approach introduced highly quantitative methods to virology, as well as an unprecedented rigor of analysis. The first experiments showed that phages indeed multiplied in the bacterial host and were liberated in a “burst” following disruption of the cell.

c01f010

Скачать книгу