Principles of Virology. Jane Flint

Чтение книги онлайн.

Читать онлайн книгу Principles of Virology - Jane Flint страница 66

Автор:
Жанр:
Серия:
Издательство:
Principles of Virology - Jane Flint

Скачать книгу

The (+) sense information in the genome is translated upon entry of the viral RNA into cells. Replication of the RNA genome yields additional (+) sense sequences, which are then translated.

      Some small RNA and DNA genomes enter cells from virus particles as naked molecules of nucleic acid, whereas others are always associated with specialized nucleic acid-binding proteins or enzymes. A fundamental difference between the genomes of viruses and those of their hosts is that although viral genomes are often covered with proteins, they are usually not bound by histones in the virus particle (polyomaviral and papillomaviral genomes are exceptions). However, it is likely that all viral DNAs become coated with histones shortly after they enter the nucleus.

      The sequences and structures near the ends of viral genomes are often indispensable for replication. For example, the DNA sequences at the ends of parvovirus genomes form T-shaped structures that are required for priming during DNA synthesis. Proteins covalently attached to 5′ ends, inverted and tandem repeats, and bound tRNAs may also participate in the replication of RNA and DNA genomes. Secondary RNA structures may facilitate translation (the internal ribosome entry site [IRES] of picornavirus genomes) and genome packaging (the structured packaging signal of retroviral genomes, [Fig. 3.9]).

      Knowledge about the physical nature of genomes and coding strategies was first obtained by the study of the nucleic acids of viruses. Indeed, DNA sequencing technology was perfected on viral genomes. The first genome of any kind to be sequenced was that of the Escherichia coli bacteriophage MS2, a linear ssRNA of 3,569 nucleotides. dsDNA genomes of larger viruses, such as herpesviruses and poxviruses (vaccinia virus), were sequenced completely by the 1990s. Since then, high-throughput sequencing has revolutionized the biological sciences, allowing rapid determination of genome sequences from clinical and environmental samples. Organand tissue-specific viromes of many organisms have been determined. In one study, over 186 host species representing the phylogenetic diversity of vertebrates, including lancelets (chordates, but considered invertebrates), jawless fish, cartilaginous fish, ray-finned fish, amphibians, and reptiles, all ancestral to birds and mammals, were sampled. RNA was extracted from multiple organs and subjected to high-throughput sequencing. Among 806 billion bases that were read, 214 new viral genomes were identified. The results show that in vertebrates other than birds and mammals, RNA viruses are more numerous and diverse than suspected. Every viral family or genus of bird and mammal viruses is also represented in viruses of amphibians, reptiles, or fish. Arenaviruses, filoviruses, and hantaviruses were found for the first time in aquatic vertebrates. The genomes of some fish viruses have now expanded so that their phylogenetic diversity is larger than in mammalian viruses. New relatives of influenza viruses were found in hagfish, amphibians, and ray-finned fish. As of this writing, the complete sequences of >8,000 different viral genomes have been determined. Published viral genome sequences can be found at http://www.ncbi.nlm.nih.gov/genome/viruses/.

Mechanism Diagram Virus Chapter(s) Figures in appendix
MultiplesubgenomicmRNAs image Adenoviridae Hepadnaviridae Herpesviridae Paramyxoviridae Poxviridae Rhabdoviridae 7, 87, 107676 1, 211, 1217, 1825, 2631, 32
Alternative mRNA splicing image Adenoviridae Orthomyxoviridae Papillomaviridae Polyomaviridae Retroviridae 7, 887, 8810 1, 215, 1623, 2429, 30
RNA editing image Paramyxoviridae Filoviridae Hepatitis delta virus 6, 888
Information on both strands image Adenoviridae Polyomaviridae Retroviridae 7-97-910 1, 223, 2429, 30
Polyproteinsynthesis

Скачать книгу