Geochemistry. William M. White

Чтение книги онлайн.

Читать онлайн книгу Geochemistry - William M. White страница 72

Geochemistry - William M. White

Скачать книгу

charge and the oxygen retains a partial positive charge. (b) Partial structure present in liquid water. Lines connecting adjacent molecules illustrate hydrogen bonds."/>

      The dissolving power of water is due to its dielectric nature. A dielectric substance is one that reduces the forces acting between electric charges. When placed between two electrically charged plates (a capacitor), water molecules will align themselves in the direction of the electric field. As a result, the molecules oppose the charge on the plates and effectively reduce the transmission of the electric field. The permittivity, ε, of a substance is the measure of this effect. The relative permittivity, or dielectric constant, εr, of a substance is defined as the ratio of the capacitance observed when the substance is placed between the plates of a capacitor to the capacitance of the same capacitor when a vacuum is present between the plates:

      (3.67)equation

      Water molecules surrounding a dissolved ion will tend to align themselves to oppose the charge of the ion. This insulates the ion from the electric field of other ions. This property of water accounts in large measure for its dissolving power. For example, we could easily calculate that the energy required to dissociate NaCl (i.e., the energy required to move Na+ and Cl ions from their normal interatomic distance in a lattice, 236 pm, to infinite separation) is about 585 kJ/mol. Because water has a dielectric constant of about 80, this energy is reduced by a factor of 80, so only 7.45 kJ are required for dissociation.

Schematic illustration of the solvation of a cation in aqueous solution. In the first solvation shell, water molecules are bound to the cation and oriented so that the partial negative charge on the oxygen faces the cation. In the second solvation shell, molecules are loosely bound and partially oriented.

      An additional effect of solvation is electrostriction. Water molecules in the first solvation sphere are packed more tightly than they would otherwise be. This is true, to a lesser extent, of molecules in the secondary shell. In addition, removal of molecules from the liquid water structure causes partial collapse of this structure. The net effect is that the volume occupied by water in an electrolyte solution is less than in pure water, which can lead to negative apparent molar volumes of solutes, as we shall see. The extent of electrostriction depends strongly on temperature and pressure.

      A final interesting property of water is that some fraction of water molecules will autodissociate. In pure water at standard state conditions, one in every 10−7 molecules will dissociate to form H+ and OH ions. Although in most thermodynamic treatments the protons produced in this process are assumed to be free ions, most will combine with water molecules to form H3O+ ions. OH is called the hydroxyl ion; the H3O+ is called hydronium.

      3.7.2 Some definitions and conventions

      The first two terms we need to define are solvent and solute. Solvent is the substance present in greatest abundance in a solution; in the electrolyte solutions that we will discuss here, water is always the solvent. Solute refers to the remaining substances present in solution. Thus, in seawater, water is the solvent and NaCl, CaSO4, and so on, are the solutes. We may also refer to the individual ions as solutes.

       3.7.2.1 Concentration units

       3.7.2.2 pH

      One of the most common parameters in aqueous geochemistry is pH. pH is defined as the negative logarithm of the hydrogen ion activity:

      (3.68)equation

       3.7.2.3 Standard state and other conventions

      The first problem we must face in determining activities in electrolyte solutions is specifying the standard state. With gases, the standard state is generally the pure substance (generally at 298 K and 1 atm), but this is generally not a reasonable choice for electrolytes. A NaCl solution will become saturated at about 0.1 XNaCl, and crystalline NaCl has very different properties from NaCl in aqueous solution. By convention, a hypothetical standard state of unit activity at 1 molal concentration is chosen:

      (3.69)equation

Скачать книгу