Nanobiotechnology in Diagnosis, Drug Delivery and Treatment. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Nanobiotechnology in Diagnosis, Drug Delivery and Treatment - Группа авторов страница 14

Nanobiotechnology in Diagnosis, Drug Delivery and Treatment - Группа авторов

Скачать книгу

method, polymeric nanoparticles can be classified into two types of structures: nanocapsule (Figure 1.2a) and nanosphere (Figure 1.2b). Among these, nanospheres consist of a matrix system which facilitates uniform dispersion of the drug. However, in the case of nanocapsules, the drug is only embedded in a cavity and the cavity is surrounded by a polymeric membrane (Sharma 2019). Among the various organic nanomaterials, polymeric nanoparticles have attracted huge attention over the last few years due to their unique properties and behaviors resulting from their small size. As reported in many studies, these nanoparticles demonstrated potential applications in biomedicine particularly in diagnostics and drug delivery. Polymeric nanoparticles are preferably used as a nanocarrier for the conjugation of various drugs, natural polymers (e.g. natural polymers like chitosan, gelatin, alginate, and albumen), and synthetic polymers (Zhang et al. 2013a,b). Further, they showed significant benefits in treatment because of controlled release of the drug, their ability to combine both therapy and imaging (theranostics), protection of drug molecules due to conjugation, and their target‐specific drug delivery (Crucho and Barros 2017).

Schematic illustrations of various organic nanomaterials. (a) Nanocapsule, (b) nanosphere, (c) polymeric micelle, (d) liposome, (e) solid-lipid nanoparticle, (f) dendrimer.

      1.2.2.2 Polymeric Micelles

      1.2.2.3 Liposomes

      1.2.2.4 Transferosomes

      Transferosomes are the modified form of liposomes which are considered to be highly elastic and deformable. These modified forms of liposome were developed by Gregor Ceve for the first time in 1990 (Blume and Ceve 1990). Transferosomes are almost similar to liposomes in their basic structural arrangement; the only difference is that the outer layer of transferosomes is more complex in nature compared to liposomes. These nanomaterials reported having enhanced flexibility due to edge activator presence in lipid bilayer (Abdallah 2013). Usually, transferosomes are formed by self‐controlled assembly and they are efficient to cross the various transport barriers, and hence are selectively used as carriers for the delivery of drugs and other macromolecules instead of liposomes (Sharma 2019).

      1.2.2.5 Niosomes

      Niosomes are another kind of liposomes that are supposed to be osmotically active, highly flexible, and comparatively more stable than liposomes (Bartelds et al. 2018; Sharma 2019). These nanomaterials are mainly composed of nonionic surfactants like alkyl ethers, alkyl glyceryl ethers, sorbitan fatty acid esters, and polyoxyethylene fatty acid esters stabilized by cholesterol (CH) (Muzzalupo and Mazzotta 2019). Like liposomes, they also form a lamellar structure in which the hydrophilic heads have oriented outward and the hydrophobic tails point inward or facing the opposite direction to form a bilayer (Sharma 2019). Niosomes are economically viable nanomaterials compared to liposomes and other related nanomaterials; moreover, they possess various novel properties such as their biodegradable, biocompatible, and non‐immunogenic nature (Singh et al. 2019).

      1.2.2.6 Ethosomes

      Ethosomes are also a type of phospholipid vesicles, considered a modified form of liposome mainly composed of ethanol, phospholipids, and water. In addition, some other components can also be included in ethosomes for specific characteristics e.g. polyglycol as a permeation enhancer, cholesterol to increase the stability, and dyes useful for characterization studies (Sharma 2019). These vesicles for the first time were developed by Prof. Elka Touitou around 1997. The simple synthesis process, high efficacy, and nontoxic nature of ethosomes allowed their use in widespread applications related to transdermal delivery. Ethosomes are soft, malleable vesicles tailored for enhanced delivery of active agents (Verma and Pathak 2010). Ethosomes are noninvasive delivery nanocarriers that facilitate penetration of drugs deep in the skin layers and the systemic circulation, and are reported to have higher transdermal flux than liposomes (Godin and Touitou 2003). The presence of ethanol in higher concentrations makes the ethosomes novel and unique, as ethanol is known for its disturbance of skin lipid bilayer organization.

      1.2.2.7 Solid Lipid Nanoparticles (SLN)

      1.2.2.8 Dendrimers

Скачать книгу