Nanobiotechnology in Diagnosis, Drug Delivery and Treatment. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Nanobiotechnology in Diagnosis, Drug Delivery and Treatment - Группа авторов страница 37
63 Mishra, S., Webster, P., and Davis, M.E. (2004). PEGylation significantly affects cellular uptake and intracellular trafficking of non‐viral gene delivery particles. European Journal of Cell Biology 83: 97–111.
64 Owens, D.E. and Peppas, N.A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics 307: 93–102.
65 Peters, R., Kramer, E., Oomen, A.G. et al. (2012). Presence of nano‐sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 6: 2441–2451.
66 Podolsky, D.K. (2002). Inflammatory bowel disease. The New England Journal of Medicine 347: 417–429.
67 Powers, K.W., Palazuelos, M., Moudgil, B.M., and Roberts, S.M. (2007). Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1: 42–51.
68 Riasat, R., Guangjun, N., Riasat, N. et al. (2016). Effects of nanoparticles on gastrointestinal disorders and therapy. Journal of Clinical Toxicology 6 (313): 1–10.
69 Romberg, B., Hennink, W.E., and Storm, G. (2008). Sheddable coatings for long‐circulating nanoparticles. Pharmaceutical Research 25: 55–71.
70 Seabra, C.L., Nunes, C., and Gomez‐Lazaro, M. (2017). Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori. International Journal of Pharmaceutics 519: 128–137.
71 Senanayake, T.H., Warren, G., Wei, X., and Vinogradov, S.V. (2013). Application of activated nucleoside analogs for the treatment of drug‐resistant tumors by oral delivery of nanogel‐drug conjugates. Journal of Controlled Release 167: 200–209.
72 Seydack, M. (2004). Nanoparticle labels in immunosensing using optical detection methods. Biosensors and Bioelectronics 20: 2454–2469.
73 Stang, J., Haynes, M., Carson, P., and Moghaddam, M. (2012). A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Transactions on Biomedical Engineering 59: 2431–2438.
74 Szentkuti, L. (1997). Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre‐epithelial mucus gel layer of the rat distal colon. Journal of Controlled Release 46: 233–242.
75 Thamphiwatana, S., Fu, V., Zhu, J. et al. (2013). Nanoparticle‐stabilized liposomes for pH‐responsive gastric drug delivery. Langmuir 29: 12228–12233.
76 Tiernan, J.P., Ingram, N., Marston, G. et al. (2015). CEA‐targeted nanoparticles allow specific in vivo fluorescent imaging of colorectal cancer models. Nanomedicine (London, England) 10: 1223–1231.
77 Tokajuk, G., Niemirowicz, K., Deptuła, P. et al. (2017). Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity. International Journal of Nanomedicine 12: 7833–7846.
78 Torchilin, V.P. (2007). Targeted pharmaceutical nanocarriers for cancer therapy and imaging. The AAPS Journal 9: E128–E147.
79 Umamaheshwari, R.B. and Jain, N.K. (2003). Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. Journal of Drug Targeting 11: 415–424.
80 Vigor, K.L., Kyrtatos, P.G., Minogue, S. et al. (2010). Nanoparticles functionalized with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 31: 1307–1315.
81 Viswanath, B., Kim, S., and Lee, K. (2016). Recent insights into nanotechnology development for detection and treatment of colorectal cancer. International Journal of Nanomedicine 11: 2491–2504.
82 Walczak, A.P., Fokkink, R., Peters, R. et al. (2013). Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 7: 1198–1210.
83 Walczak, A.P., Kramer, E., Hendriksen, P.J. et al. (2015). In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co‐culture model. Nanotoxicology 9: 886–894.
84 Weinberg, W.C., Frazier‐Jessen, M.R., Wu, W.J. et al. (2005). Development and regulation of monoclonal antibody products: challenges and opportunities. Cancer Metastasis Reviews 24: 569–584.
85 Weissleder, R., Kelly, K., Sun, E.Y. et al. (2005). Cell‐specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology 23: 1418–1423.
86 Westmeier, D., Posselt, G., Hahlbrock, A. et al. (2018). Nanoparticle binding attenuates the pathobiology of gastric cancer‐associated Helicobacter pylori. Nanoscale 10: 1453–1463.
87 Xiao, B. and Merlin, D. (2012). Oral colon‐specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opinion in Drug Delivery 9: 1393–1407.
88 Zhu, X. and Gao, T. (2019). Spectrometry. In: Nano‐Inspired Biosensors for Protein Assay with Clinical Applications (ed. G. Li), 237–264. Amsterdam, Netherlands: Elsevier.
89 Zottel, A., Videtič, A., and Jovcevska, A. (2019). Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. Materials 12: 1–28.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.