Nanobiotechnology in Diagnosis, Drug Delivery and Treatment. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Nanobiotechnology in Diagnosis, Drug Delivery and Treatment - Группа авторов страница 29

Nanobiotechnology in Diagnosis, Drug Delivery and Treatment - Группа авторов

Скачать книгу

(2013). Research of vein‐protective effect of the preparation “Agsular”® on the models of vascular pathology. Acta Biomedica Scientifica 1 (89): 106–110.

      38 Krug, P., Mielczarek, L., Wiktorska, K. et al. (2019). Sulforaphane‐conjugated selenium nanoparticles: towards a synergistic anticancer effect. Nanotechnology 30 (6): 065101.

      39 Kumari, M., Ray, L., Purohit, M.P. et al. (2017). Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich's ascites carcinoma bearing mice. European Journal of Pharmaceutics and Biopharmaceutics 117: 346–362.

      40 Lara, H.H., Guisbiers, G., Mendoza, J. et al. (2018). Synergistic antifungal effect of chitosan‐stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms. International Journal of Nanomedicine 13: 2697–2708.

      41 Li, Y., Lin, Z., Zhao, M. et al. (2016). Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. International Journal of Nanomedicine 11: 3065–3076.

      42 Liao, W., Yu, Z., Lin, Z. et al. (2015). Biofunctionalization of selenium nanoparticle with Dictyophora indusiata polysaccharide and its antiproliferative activity through death‐receptor and mitochondria‐mediated apoptotic pathways. Scientific Reports 5: 18629.

      43 Liao, W., Zhang, R., Dong, C. et al. (2016). Novel walnut peptide‐selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity. International Journal of Nanomedicine 11: 1305–1321.

      44 Liu, W., Li, X., Wong, Y.S. et al. (2012). Selenium nanoparticles as a carrier of 5‐fluorouracil to achieve anticancer synergism. ACS Nano 6 (8): 6578–6591.

      45 Liu, T., Zeng, L., Jiang, W. et al. (2015). Rational design of cancer‐targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine 11 (4): 947–958.

      46 Liu, Y., Zeng, S., Liu, Y. et al. (2018). Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. International Journal of Biological Macromolecules 114: 632–639.

      47 Luo, H., Wang, F., Bai, Y. et al. (2012). Selenium nanoparticles inhibit the growth of HeLa and MDA‐MB‐231 cells through induction of S phase arrest. Colloids and Surfaces B: Biointerfaces 94: 304–308.

      48 Menon, S., Devi, S., Santhiya, R. et al. (2018). Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids and Surfaces B: Biointerfaces 170: 280–292.

      49 Mosallam, F.M., El‐Sayyad, G.S., Fathy, R.M., and El‐Batal, A.I. (2018). Biomolecules‐mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug‐resistant bacteria and pathogenic fungi. Microbial Pathogenesis 122: 108–116.

      50 Nazıroğlu, M., Muhamad, S., and Pecze, L. (2017). Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles. Expert Review of Clinical Pharmacology 10 (7): 773–782.

      51 Nematollahi, A., Shahbazi, P., Rafat, A., and Ghanbarlu, M. (2018). Comparative survey on scolicidal effects of selenium and silver nanoparticles on protoscolices of hydatid cyst. Open Veterinary Journal 8 (4): 374–377.

      52 Peng, D., Zhang, J., Liu, Q., and Taylor, E.W. (2007). Size effect of elemental selenium nanoparticles (Nano‐Se) at supranutritional levels on selenium accumulation and glutathione S‐transferase activity. Journal of Inorganic Biochemistry 101 (10): 1457–1463.

      53 Pi, J., Jin, H., Liu, R. et al. (2013). Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF‐7 cells. Applied Microbiology and Biotechnology 97 (3): 1051–1062.

      54 Pi, J., Jiang, J., Cai, H. et al. (2017). GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR‐mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Delivery 24 (1): 1549–1564.

      55 Piacenza, E., Presentato, A., Zonaro, E. et al. (2017). Antimicrobial activity of biogenically produced spherical Se‐nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphylococcus aureus strains on hydroxyapatite‐coated surfaces. Microbial Biotechnology 10 (4): 804–818.

      56 Ramamurthy, C., Sampath, K.S., Arunkumar, P. et al. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering 36 (8): 1131–1139.

      57 Ren, S.X., Zhan, B., Lin, Y. et al. (2019). Selenium nanoparticles dispersed in phytochemical exert anti‐inflammatory activity by modulating catalase, GPx1, and COX‐2 gene expression in a rheumatoid arthritis rat model. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 25: 991–1000.

      58 Rodionova, L.V., Shurygina, I.A., Sukhov, B.G. et al. (2015). Nanobiocomposite based on selenium and arabinogalactan: synthesis, structure, and application. Russian Journal of General Chemistry 85 (1): 485–487.

      59 Sadeghian, S., Kojouri, G.A., and Mohebbi, A. (2012). Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite. Biological Trace Element Research 146 (3): 302–308.

      60 Shahverdi, A.R., Shahverdi, F., Faghfuri, E. et al. (2018). Characterization of folic acid surface‐coated selenium nanoparticles and corresponding in vitro and in vivo effects against breast cancer. Archives of Medical Research 49 (1): 10–17.

      61 Shoeibi, S. and Mashreghi, M. (2017). Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology 39: 135–139.

      62 Shurygina, IA, & Shurygin, MG 2013, Method of preparing bone tissue preparation and set for its realization, RU patent 2500104.

      63 Shurygina, I.A. and Shurygin, M.G. (2018). Method of decalcination of bone tissue. Journal of Clinical and Experimental Morphology 4 (28): 34–37.

      64 Shurygina, I.A., Sukhov, B.G., Fadeeva, T.V. et al. (2011). Bactericidal action of Ag(0)‐antithrombotic sulfated arabinogalactan nanocomposite: coevolution of initial nanocomposite and living microbial cell to a novel nonliving nanocomposite. Nanomedicine: Nanotechnology, Biology, and Medicine 7 (6): 827–833.

      65  Shurygina, I.A., Rodionova, L.V., Shurygin, M.G. et al. (2015a). Using confocal microscopy to study the effect of an original pro‐enzyme Se/arabinogalactan nanocomposite on tissue regeneration in a skeletal system. Bulletin of the Russian Academy of Sciences: Physics 79 (2): 256–258.

      66 Shurygina, I.A., Shurygin, M.G., Dmitrieva, L.A. et al. (2015b). Bacterio‐ and lymphocytotoxicity of silver nanocomposite with sulfated arabinogalactan. Russian Chemical Bulletin 64 (7): 1629–1632.

      67 Shurygina, I.A., Shurygin, M.G., and Sukhov, B.G. (2016). Nanobiocomposites of metals as antimicrobial agents. In: Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches, 1e (eds. M. Rai and K. Kon), 167–186. Academic Press.

      68 Singh, S.C., Mishra, S.K., Srivastava, R.K., and Gopal, R. (2010). Optical properties of selenium quantum dots produced with laser irradiation of water suspended Se nanoparticles. The Journal of Physical Chemistry C 114 (41): 17374–17384.

      69 Sonkusre, P. and Cameotra, S.S. (2017). Biogenic selenium nanoparticles induce ROS‐mediated necroptosis in PC‐3 cancer cells through TNF activation. Journal

Скачать книгу