Искусство статистики. Как находить ответы в данных. Дэвид Шпигельхалтер
Чтение книги онлайн.
Читать онлайн книгу Искусство статистики. Как находить ответы в данных - Дэвид Шпигельхалтер страница 11
Однако у всех диаграмм есть общая проблема. Внимание сосредоточено на самых больших значениях, причем основная часть чисел сконцентрирована в левой части. Можно ли представить эти данные более информативно? Мы могли бы отбросить самые большие числа как нелепые (когда я первоначально анализировал полученные величины, я сознательно исключил все, превышающие 9000). Кроме того, мы можем уменьшить влияние экстремальных наблюдений, скажем, отобразив данные в логарифмическом масштабе, когда интервал от 100 до 1000 имеет такую же длину, что и интервал от 1000 до 10 000[41].
На рис. 2.3 представлена более понятная структура с вполне симметричным распределением и отсутствием значительных выбросов. Это избавляет нас от исключения каких-либо значений наблюдений, что обычно не считается хорошей идеей (если, конечно, речь не идет о явных ошибках).
Рис. 2.3
Графическое отображение догадок о числе драже в банке в логарифмическом масштабе: (a) точечная диаграмма; (b) «ящик с усами»; (c) гистограмма – на всех заметна достаточная степень симметрии
Единственно правильного способа отображения чисел нет, у каждого из способов свои преимущества: на точечной диаграмме показаны все отдельные точки, «ящик с усами» дает визуальное представление, а гистограмма помогает полнее понять вид исходного распределения.
Переменные, которые записываются в виде чисел, могут быть разного типа:
• Счетные переменные: могут принимать целочисленные значения 0, 1, 2, 3… Например, ежегодное число самоубийств или предположения о количестве драже в банке.
• Непрерывные переменные: могут принимать любые значения. Например, некоторые вещи теоретически можно измерять с любой точностью и получать любые числа. Скажем, вес и рост, которые отличаются как у разных людей, так и у одного человека в зависимости от времени. Разумеется, эти значения можно округлить до целого числа сантиметров или килограммов[42].
Когда набор наблюдений (выборка) сводится к одному числу, мы, как правило, называем его средним значением. Все знакомы с понятием средней зарплаты, средней оценки на экзамене или средней температуры, но часто не знают, как интерпретировать эти величины (особенно если человек, который о них говорит, сам не понимает, о чем речь).
Чаще всего встречаются три толкования термина «среднее значение»:
1. Среднее арифметическое (или выборочное среднее): сумма всех величин, деленная на их количество.
2. Медиана: среднее по величине число ранжированного ряда (то есть слева и справа от него будет поровну чисел)[43].
41
Десятичный логарифм числа
42
Вообще говоря, непрерывным переменным противопоставляются дискретные, которые необязательно принимают неотрицательные целые значения, а могут принимать значения в произвольном конечном или счетном множестве.
43
Это определение удобно для нечетного количества элементов в выборке. Если число элементов четное, то обычно медианой считают полусумму двух средних элементов ряда.