Engineering Acoustics. Malcolm J. Crocker

Чтение книги онлайн.

Читать онлайн книгу Engineering Acoustics - Malcolm J. Crocker страница 63

Engineering Acoustics - Malcolm J. Crocker

Скачать книгу

      Solution

      We obtain that Smax = 26.5 and ∑S = 134.2. Thus from Eq. (4.2) the loudness is: S = 26.5 + 0.3 (134.2 − 26.5) = 59 sones (OD, Octave Diffuse) and from Eq. (4.1), or Figure 4.7, the loudness level is: P = 99 phons (OD).

Octave band center frequency, Hz Octave band level, dB Band loudness index S
31.5 75 3.0
63 79 6.2
125 82 10.5
250 85 15.3
500 85 18.7
1000 87 26.5
2000 82 23.0
4000 75 17.5
8000 68 13.5

Schematic illustration the contours of equal loudness index.

      There are several other aspects of loudness which we have not had room to discuss in this book, e.g. impulsive noise, and monaural and binaural loudness. Readers will find these well covered in Kryter's book [16].

      4.3.3 Masking

      The masking phenomenon is well known to most people. A loud sound at one frequency can cause another quieter sound at the same frequency or a sound close in frequency to become inaudible. This effect is known as masking. Broadband sounds can have an even more complicated masking effect and can mask louder sounds over a much wider frequency range than narrow‐band sounds. These effects are important in human assessment of product sound quality.

Graph depicts the contours joining sound pressure levels of pure tones at different frequencies that are masked by white noise at the spectral density level LWN shown on each contour. Graph depicts masking of tones by noise at different frequencies and sound pressure levels.

      Source: Reprinted with permission from [20], American Institute of Physics.

Скачать книгу