DNA- and RNA-Based Computing Systems. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу DNA- and RNA-Based Computing Systems - Группа авторов страница 35

DNA- and RNA-Based Computing Systems - Группа авторов

Скачать книгу

in live yeast. Nat. Commun. 6: 8882. https://doi.org/10.1038/ncomms9882.

      45 45 Shen, H., Wang, Y., Wang, J. et al. (2019). Emerging biomimetic applications of DNA nanotechnology. ACS Appl. Mater. Interfaces 11: 13859–13873. https://doi.org/10.1021/acsami.8b06175.

      46 46 Goldsworthy, V., LaForce, G., Abels, S., and Khisamutdinov, E.E. (2018). Fluorogenic RNA aptamers: a nano‐platform for fabrication of simple and combinatorial logic gates. Nanomaterials (Basel) 8 (Art. No.: 984) https://doi.org/10.3390/nano8120984.

      47 47 Kang, K.N. and Lee, Y.S. (2013). RNA aptamers: a review of recent trends and applications. Adv. Biochem. Eng./Biotechnol. 131: 153–169. https://doi.org/10.1007/10_2012_136.

      48 48 Tuerk, C. and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510. https://doi.org/10.1126/science.2200121.

      49 49 Ellington, A.D. and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822. https://doi.org/10.1038/346818a0.

      50 50 Iliuk, A.B., Hu, L., and Tao, W.A. (2011). Aptamer in bioanalytical applications. Anal. Chem. 83: 4440–4452. https://doi.org/10.1021/ac201057w.

      51 51 Panigaj, M., Johnson, M.B., Ke, W. et al. (2019). Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano 13: 12301–12321. https://doi.org/10.1021/acsnano.9b06522.

      52 52 Goud, K.Y., Reddy, K.K., Satyanarayana, M. et al. (2019). A review on recent developments in optical and electrochemical aptamer‐based assays for mycotoxins using advanced nanomaterials. Mikrochim. Acta 187: 29. https://doi.org/10.1007/s00604-019-4034-0.

      53 53 Li, F., Yu, Z., Han, X., and Lai, R.Y. (2019). Electrochemical aptamer‐based sensors for food and water analysis: a review. Anal. Chim. Acta 1051: 1–23. https://doi.org/10.1016/j.aca.2018.10.058.

      54 54 Pehlivan, Z.S., Torabfam, M., Kurt, H. et al. (2019). Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019). Mikrochim. Acta 186: 563. https://doi.org/10.1007/s00604-019-3659-3.

      55 55 Seelig, G., Soloveichik, D., Zhang, D.Y., and Winfree, E. (2006). Enzyme‐free nucleic acid logic circuits. Science 314: 1585–1588. https://doi.org/10.1126/science.1132493.

      56 56 Bao, G., Rhee, W.J., and Tsourkas, A. (2009). Fluorescent probes for live‐cell RNA detection. Annu. Rev. Biomed. Eng. 11: 25–47. https://doi.org/10.1146/annurev-bioeng-061008-124920.

      57 57 Benenson, Y., Gil, B., Ben‐Dor, U. et al. (2004). An autonomous molecular computer for logical control of gene expression. Nature 429: 423–429. https://doi.org/10.1038/nature02551.

      58 58 Zhang, X., Potty, A.S., Jackson, G.W. et al. (2009). Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. J. Mol. Recognit. 22: 154–161. https://doi.org/10.1002/jmr.917.

      59 59 Masuda, I., Igarashi, T., Sakaguchi, R. et al. (2017). A genetically encoded fluorescent tRNA is active in live‐cell protein synthesis. Nucleic Acids Res. 45: 4081–4093. https://doi.org/10.1093/nar/gkw1229.

      60 60 Culler, S.J., Hoff, K.G., and Smolke, C.D. (2010). Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330: 1251–1255. https://doi.org/10.1126/science.1192128.

      61 61 Tan, X., Constantin, T.P., Sloane, K.L. et al. (2017). Fluoromodules consisting of a promiscuous RNA aptamer and red or blue fluorogenic cyanine dyes: selection, characterization, and bioimaging. J. Am. Chem. Soc. 139: 9001–9009. https://doi.org/10.1021/jacs.7b04211.

      62 62 Paige, J.S., Wu, K.Y., and Jaffrey, S.R. (2011). RNA mimics of green fluorescent protein. Science 333: 642–646. https://doi.org/10.1126/science.1207339.

      63 63 Song, W., Strack, R.L., Svensen, N., and Jaffrey, S.R. (2014). Plug‐and‐play fluorophores extend the spectral properties of Spinach. J. Am. Chem. Soc. 136: 1198–1201. https://doi.org/10.1021/ja410819x.

      64 64 Dolgosheina, E.V., Jeng, S.C., Panchapakesan, S.S. et al. (2014). RNA mango aptamer‐fluorophore: a bright, high‐affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9: 2412–2420. https://doi.org/10.1021/cb500499x.

      65 65 Song, W., Filonov, G.S., Kim, H. et al. (2017). Imaging RNA polymerase III transcription using a photostable RNA‐fluorophore complex. Nat. Chem. Biol. 13: 1187–1194. https://doi.org/10.1038/nchembio.2477.

      66 66 Constantin, T.P., Silva, G.L., Robertson, K.L. et al. (2008). Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org. Lett. 10: 1561–1564. https://doi.org/10.1021/ol702920e.

      67 67 Babendure, J.R., Adams, S.R., and Tsien, R.Y. (2003). Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125: 14716–14717. https://doi.org/10.1021/ja037994o.

      68 68 Bouhedda, F., Autour, A., and Ryckelynck, M. (2017). Light‐up RNA aptamers and their cognate fluorogens: from their development to their applications. Int. J. Mol. Sci. 19 https://doi.org/10.3390/ijms19010044.

      69 69 Ouellet, J. (2016). RNA fluorescence with light‐up aptamers. Front. Chem. 4: 29. https://doi.org/10.3389/fchem.2016.00029.

      70 70 Grate, D. and Wilson, C. (1999). Laser‐mediated, site‐specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. U.S.A. 96: 6131–6136. https://doi.org/10.1073/pnas.96.11.6131.

      71 71 Khisamutdinov, E.F., Li, H., Jasinski, D.L. et al. (2014). Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 42: 9996–10004. https://doi.org/10.1093/nar/gku516.

      72 72 Warner, K.D., Chen,

Скачать книгу