DNA- and RNA-Based Computing Systems. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу DNA- and RNA-Based Computing Systems - Группа авторов страница 36

DNA- and RNA-Based Computing Systems - Группа авторов

Скачать книгу

A.T. et al. (2015). RNA‐based fluorescent biosensors for live cell imaging of second messenger cyclic di‐AMP. J. Am. Chem. Soc. 137: 6432–6435. https://doi.org/10.1021/jacs.5b00275.

      74 74 Filonov, G.S., Moon, J.D., Svensen, N., and Jaffrey, S.R. (2014). Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence‐based selection and directed evolution. J. Am. Chem. Soc. 136: 16299–16308. https://doi.org/10.1021/ja508478x.

      75 75 Breaker, R.R. (2002). Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13: 31–39. https://doi.org/10.1016/s0958-1669(02)00281-1.

      76 76 Zivarts, M., Liu, Y., and Breaker, R.R. (2005). Engineered allosteric ribozymes that respond to specific divalent metal ions. Nucleic Acids Res. 33: 622–631. https://doi.org/10.1093/nar/gki182.

      77 77 Kolpashchikov, D.M. (2005). Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc. 127: 12442–12443. https://doi.org/10.1021/ja0529788.

      78 78 Stojanovic, M.N. and Kolpashchikov, D.M. (2004). Modular aptameric sensors. J. Am. Chem. Soc. 126: 9266–9270. https://doi.org/10.1021/ja032013t.

      79 79 Song, W., Strack, R.L., and Jaffrey, S.R. (2013). Imaging bacterial protein expression using genetically encoded RNA sensors. Nat. Methods 10: 873–875. https://doi.org/10.1038/nmeth.2568.

      80 80 Sharma, S., Zaveri, A., Visweswariah, S.S., and Krishnan, Y. (2014). A fluorescent nucleic acid nanodevice quantitatively images elevated cyclic adenosine monophosphate in membrane‐bound compartments. Small 10: 4276–4280. https://doi.org/10.1002/smll.201400833.

      81 81 Paige, J.S., Nguyen‐Duc, T., Song, W., and Jaffrey, S.R. (2012). Fluorescence imaging of cellular metabolites with RNA. Science 335: 1194. https://doi.org/10.1126/science.1218298.

      82 82 Su, Y., Hickey, S.F., Keyser, S.G., and Hammond, M.C. (2016). In vitro and in vivo enzyme activity screening via RNA‐based fluorescent biosensors for S‐adenosyl‐l‐homocysteine (SAH). J. Am. Chem. Soc. 138: 7040–7047. https://doi.org/10.1021/jacs.6b01621.

      83 83 You, M., Litke, J.L., and Jaffrey, S.R. (2015). Imaging metabolite dynamics in living cells using a Spinach‐based riboswitch. Proc. Natl. Acad. Sci. U.S.A. 112: E2756–E2765. https://doi.org/10.1073/pnas.1504354112.

      84 84 Ilgu, M., Ray, J., Bendickson, L. et al. (2016). Light‐up and FRET aptamer reporters; evaluating their applications for imaging transcription in eukaryotic cells. Methods 98: 26–33. https://doi.org/10.1016/j.ymeth.2015.12.009.

      85 85 Saurabh, S., Perez, A.M., Comerci, C.J. et al. (2016). Super‐resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule. J. Am. Chem. Soc. 138: 10398–10401. https://doi.org/10.1021/jacs.6b05943.

      86 86 Pothoulakis, G., Ceroni, F., Reeve, B., and Ellis, T. (2014). The spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth. Biol. 3: 182–187. https://doi.org/10.1021/sb400089c.

      87 87 Strack, R.L., Disney, M.D., and Jaffrey, S.R. (2013). A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat‐containing RNA. Nat. Methods 10: 1219–1224. https://doi.org/10.1038/nmeth.2701.

      88 88 Tregubov, A.A., Nikitin, P.I., and Nikitin, M.P. (2018). Advanced smart nanomaterials with integrated logic‐gating and biocomputing: dawn of theranostic nanorobots. Chem. Rev. 118: 10294–10348. https://doi.org/10.1021/acs.chemrev.8b00198.

      89 89 Chandler, M., Lyalina, T., Halman, J. et al. (2018). Broccoli fluorets: split aptamers as a user‐friendly fluorescent toolkit for dynamic RNA nanotechnology. Molecules 23 https://doi.org/10.3390/molecules23123178.

      90 90 Kikuchi, N. and Kolpashchikov, D.M. (2016). Split spinach aptamer for highly selective recognition of DNA and RNA at ambient temperatures. ChemBioChem 17: 1589–1592. https://doi.org/10.1002/cbic.201600323.

      91 91 Kikuchi, N. and Kolpashchikov, D.M. (2017). A universal split spinach aptamer (USSA) for nucleic acid analysis and DNA computation. Chem. Commun. (Camb) 53: 4977–4980. https://doi.org/10.1039/c7cc01540b.

      92 92 Rogers, T.A., Andrews, G.E., Jaeger, L., and Grabow, W.W. (2015). Fluorescent monitoring of RNA assembly and processing using the split‐spinach aptamer. ACS Synth. Biol. 4: 162–166. https://doi.org/10.1021/sb5000725.

      93 93 Alam, K.K., Tawiah, K.D., Lichte, M.F. et al. (2017). A fluorescent split aptamer for visualizing RNA‐RNA assembly in vivo. ACS Synth. Biol. 6: 1710–1721. https://doi.org/10.1021/acssynbio.7b00059.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/4gI4SUNDX1BST0ZJTEUAAQEAAAIoQURCRQIQAABtbnRyUkdC IFhZWiAH0AAIAAsAEwA2ABJhY3NwQVBQTAAAAABub25lAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAA AADTLUFEQkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApj cHJ0AAAA/AAAADJkZXNjAAABMAAAAGR3dHB0AAABlAAAABRia3B0AAABqAAAABRyVFJDAAABvAAA AA5nVFJDAAABzAAAAA5iVFJDAAAB3AAAAA5yWFlaAAAB7AAAABRnWFlaAAACAAAAABRiWFlaAAAC FAAAABR0ZXh0AAAAAENvcHlyaWdodCAyMDAwIEFkb2JlIFN5c3RlbXMgSW5jb3Jwb3JhdGVkAAAA ZGVzYwAAAAAAAAAKUEFML1NFQ0FNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAADzUQAB AAAAARbMWFlaIAAAAAAAAAAAAAAAAAAAAABjdXJ2AAAAAAAAAAECMwAAY3VydgAAAAAAAAABAjMA AGN1cnYAAAAAAAAAAQIzAABYWVogAAAAAAAAdIsAADt3AAADuFhZ

Скачать книгу