Nanopharmaceutical Advanced Delivery Systems. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Nanopharmaceutical Advanced Delivery Systems - Группа авторов страница 22

Nanopharmaceutical Advanced Delivery Systems - Группа авторов

Скачать книгу

Adv., 32, 711–726, 2014.

      96. Liu, X., Dai, Q., Austin, L., Coutts, J., Knowles, G., Zou, J. et al., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc., 130, 2780–2782, 2008.

      97. Brar, S.K. and Verma, M., Measurement of nanoparticles by light-scattering techniques. Trends Analyt. Chem., 30, 4–17, 2011.

      98. Hall, J.B., Dobrovolskaia, M.A., Patri, A.K., McNeil, S.E., Characterization of nanoparticles for therapeutics. Nanomedicine (Lond.), 2, 789–803, 2007.

      99. Kumar, R., Siril, P.F., Soni, P., Preparation of nano-RDX by evaporation assisted solvent antisolvent interaction. Propellants Explos. Pyrotech., 39, 383–389, 2014.

      100. Kumar, R., Siril, P.F., Soni, P., Optimized synthesis of HMX nanoparticles using antisolvent precipitation method. J. Energ. Mater., 33, 277–287, 2015.

      101. Su, D., Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ., 2, 2, 70–83, 2017.

      103. Bibi, S., Kaur, R., Henriksen-Lacey, M., McNeil, S.E., Wilkhu, J., Lattmann, E. et al., Microscopy imaging of liposomes: from coverslips to environmental SEM. Int. J. Pharm., 417, 138–150, 2011.

      104. Rissi, N.C., Guglielmi, D.A.S., Corrêa, M.A., Chiavacci, L.A., Relationship between composition and organizational levels of nanostructured systems formed by Oleth 10 and PPG-5-Ceteth-20 for potential drug delivery. BJPS, 50, 653–661, 2014.

      105. Eaton, P. and West, P., Atomic force microscopy, Oxford University Press, United Kingdom, 2010.

      106. Hanley, S.J. and Gray, D.G., Atomic force microscopy, CRC Press Inc., Boca Raton, FL, 1995.

      107. Xu, R., Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology, 6, 112–115, 2008.

      108. Chorom., M. and Rengasamy, P., Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. Eur. J. Soil Sci., 46, 657–665, 1995.

      109. Wendlandt, W.W., Thermal methods of analysis, Wiley-Interscience, New York, 1974.

      110. Kumar, D., Kapoor, I.P., Singh, G., Siril, P.F., Tripathi, A.M., Preparation, characterization, and catalytic activity of nanosized NiO and ZnO: part 74. Propellants. Explos. Pyrotech., 36, 268–272, 2011.

      111. Kumar, R., Siril, P.F., Soni, P., Tuning the particle size and morphology of high energeticmaterial nanocrystals. Def. Technol., 11, 382–389, 2015.

      112. Chauhan, H., Mohapatra, S., Munt, D.J., Chandratre, S., Dash, A., Physical-Chemical Characterization and Formulation Considerations for Solid Lipid Nanoparticles. AAPS Pharm. Sci. Tech., 17, 640–651, 2016.

      113. Stuart, B., Infrared spectroscopy, pp. 1–20, Wiley Online Library, Germany, 2005.

      114. Kumar, R., Siril, P.F., Javid, F., Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Mater. Sci. Eng. C, 69, 1335–1344, 2016.

      115. Suryanarayana, C. and Norton, M.G., X-ray diffraction: a practical approach, Springer Science & Business Media, Germany, 2013.

      116. Esposito, E., Mariani, P., Drechsler, M., Cortesi, R., Structural Studies of Lipid-Based Nanosystems for Drug Delivery: X-ray Diffraction (XRD) and Cryogenic Transmission Electron Microscopy (Cryo-TEM), in: Handbook of Nanoparticles, M. Aliofkhazraei (Ed.), Springer, Cham, 2016.

      117. Faix, O., Fourier transform infrared spectroscopy, in: Methods in lignin chemistry, pp. 233–241, Springer, Germany, 1992.

      118. Kumar, R. and Siril, P.F., Enhancing the solubility of fenofibrate by nanocrystal formation and encapsulation. AAPS Pharm. Sci. Tech., 19, 284–292, 2018.

      119. Nekkanti, V. and Kalepu, S., Recent Advances in Liposomal Drug Delivery: A Review. Pharm. Nanotechnol., 3, 35–55, 2015.

      120. Khan, I., Kumar, H., Mishra, G., Gothwal, A., Kesharwani, P., Gupta, U., Polymeric Nanocarriers: A New Horizon for the Effective Management of Breast Cancer. Curr. Pharm. Des., 23, 5315–5326, 2018.

      121. Dong, Y.D., Tchung, E., Nowell, C., Kaga, S., Leong, N., Mehta, D. et al., Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. J. Liposome Res., 29, 1–9, 2019.

      122. Hua, S. and Wu, S.Y., The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol., 4, 143, 2013.

      124. Ghasemiyeh, P. and Mohammadi-Samani, S., Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 13, 288–303, 2018.

      125. Tabatt, K., Sameti, M., Olbrich, C., Müller, R.H., Lehr, C.M., Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. Eur. J. Pharm. Biopharm., 57, 155–162, 2004.

      126. Pedersen, N., Hansen, S., Heydenreich, A.V., Kristensen, H.G., Poulsen, H.S., Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur. J. Pharm. Biopharm., 62, 155–162, 2006.

      127. Fatouh, A.M., Elshafeey, A.H., Abdelbary, A., Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des. Devel. Ther., 11, 1815–1825, 2017.

      128. Khosa, A., Reddi, S., Saha, R.N., Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 103, 598–613, 2018.

      129. Song, S., Mao, G., Du, J., Zhu, X., Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv., 23, 1404–1408, 2016.

      130. Blasi, P., Giovagnoli, S., Schoubben, A., Ricci, M., Rossi, C., Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev., 59, 454–477, 2007.

      131. Ahmad, N., Ahmad, R., Alam, M.A., Samim, M., Iqbal, Z., Ahmad, F.J., Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int. J. Biol. Macromol., 88, 320–332, 2016.

      132. Fenske, D.B. and Cullis, P.R., Entrapment of small molecules and nucleic acid-based drugs in liposomes. Methods Enzymol., 391, 7–40, 2005.

      133. Lovelyn, C. and Attama, A.A., Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol., 2, 626–639, 2011.

      134.

Скачать книгу